3

I am solving integrals using u-substitution. However, when I compile the code the box where it shows the substitution is not placed in the right place. And, when I continue to solve the problem another integral with a new boundary is typed inside the box.

\documentclass[12pt]{article}
\usepackage{authblk}
\usepackage{setspace}
\doublespacing% For double space
\usepackage{subeqnarray}
\usepackage{graphicx,epstopdf}
\usepackage[framed , numbered]{matlab-prettifier}% For MATLAB code
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{xcolor}
\usepackage{bigstrut}
\usepackage{tikz}

\renewcommand{\qedsymbol}{$\blacksquare$}

\usepackage{nccmath}% For adding Mathematical commands \usepackage[english]{babel} \usepackage{blindtext} \usepackage[a4paper,margin=2.5cm]{geometry} % set page margins as needed \newcommand{\diff}{\mathop{}!d} \newcommand{\innerp}[2]{\left\langle #1 \vert #2 \right\rangle} \usetikzlibrary{tikzmark,calc} \begin{document}

\begin{proof}
$$ a_n\cos(nx)+b_n\sin(nx) $$ $$ = \Big[\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos(nt)dt\Big]\cos(nx)+\Big[\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\sin(nt)dt\Big]\sin(nx) $$ $$ = \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\Big[\cos(nt)\cos(nx)+\sin(nt)\sin(nx)\Big]dt $$ $$ = \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos\big(n(t-x)\big)dt $$ $$ = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)dt+\frac{1}{\pi}\sum_{n=1}^{N}\int_{-\pi}^{\pi}f(t)\cos\big(n(t-x)\big)dt $$ $$ = \frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\Big[\frac{1}{2}+\sum_{n=1}^{N}\cos\big(n(t-x)\big)\Big]dt $$ \begin{align} = \frac{1}{\pi}\displaystyle\int_{-\pi}^{\pi}f(t)D_N(t-x)dt \end{align} \begin{tikzpicture}[overlay, remember picture] \coordinate (x) at ($(pic cs:eqt)+(1,0)$); \draw (x)--($(x)+(3,0)$); \draw[red] (x) node[above right] {Substitution}; \draw ($(x)+(3,0)$) node[right,draw,fill=white!50] {% $\begin{aligned} u&=t-x,\ du&= dt \end{aligned}$}; \end{tikzpicture} $$ = \frac{1}{\pi}\int_{-\pi-x}^{\pi-x}f(x+u)D_N(u)du = \frac{1}{\pi}\int_{-pi}^{pi}f(x+t)D_N(t)dt $$ $$ = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x+t)\frac{\sin\big((N+\frac{1}{2})t\big)}{\sin(\frac{1}{2}t)}dt $$

\end{proof} \end{document}

Mico
  • 506,678
Riddle72
  • 107
  • 3

1 Answers1

8

I must confess that I don't see a need for the tikz machinery. I also wouldn't use $$ ... $$ in LaTeX documents. Please see Why is \[ ... \] preferable to $$ ... $$? for a longer discussion of this point.

Instead, I'd use an align* environment for the entire sequence of equations and align the individual equations on the & symbols. The "Substitution ..." interjection need not be encased in an \intertext directive.

enter image description here

\documentclass[12pt]{article}
%% Remark: I've streamlined your preamble as much as possible

\usepackage[nodisplayskipstretch]{setspace} \doublespacing % For double space

\usepackage{amssymb,amsmath,amsthm} \renewcommand{\qedsymbol}{$\blacksquare$} \newcommand\intpp{\int_{-\pi}^{\pi}} % handy shortcut macro

\usepackage{xcolor} \usepackage[english]{babel} \usepackage[a4paper,margin=2.5cm]{geometry}

\begin{document} \allowdisplaybreaks % allow page breaks in long displays \begin{proof}
\begin{align} a_n&\cos(nx)+b_n\sin(nx) \ &= \biggl[\frac{1}{\pi}\intpp f(t)\cos(nt),dt\biggr]\cos(nx) +\biggl[\frac{1}{\pi}\intpp f(t)\sin(nt),dt\biggr]\sin(nx) \ &= \frac{1}{\pi}\intpp f(t)\bigl[\cos(nt)\cos(nx)+\sin(nt)\sin(nx)\bigr]dt\ &= \frac{1}{\pi}\intpp f(t)\cos\bigl(n(t-x)\bigr),dt \ &= \frac{1}{2\pi}\intpp f(t),dt +\frac{1}{\pi}\sum_{n=1}^{N}\intpp f(t)\cos\bigl(n(t-x)\bigr),dt \ &= \frac{1}{\pi}\intpp f(t) \biggl[\frac{1}{2}+\sum_{n=1}^{N}\cos\bigl(n(t-x)\bigr)\biggr]dt \ &= \frac{1}{\pi}\intpp f(t)D_N(t-x),dt \ & \qquad \textcolor{red}{\textup{Substitution}} \quad \boxed{\begin{aligned} u&=t-x,\ du&=dt \end{aligned}} \ &= \frac{1}{\pi}\int_{-\pi-x}^{\pi-x}f(x+u)D_N(u),du \ &= \frac{1}{\pi}\intpp f(x+t)D_N(t),dt \ &= \frac{1}{2\pi}\intpp f(x+t), \frac{\sin\bigl((N+\frac{1}{2})t\bigr)}{\sin\bigl(\frac{1}{2}t\bigr)},dt \qquad\qedhere \end{align} \end{proof} \end{document}

Mico
  • 506,678