1
\documentclass[12pt]{elsarticle}
%% for removing the footer 
\makeatletter
\def\ps@pprintTitle{%
  \let\@oddhead\@empty
  \let\@evenhead\@empty
  %\let\@oddfoot\@empty
  \let\@evenfoot\@oddfoot
}
\usepackage{multirow}
\usepackage{lineno} %% package for line number
%% The amssymb package provides various useful mathematical symbols
\usepackage{lscape}
\usepackage{graphicx}
\usepackage{subfig}
\usepackage{multicol}
\setlength{\columnsep}{1cm}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage{amssymb}
\usepackage{url}
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
\usepackage{afterpage,lscape}
\usepackage{lipsum, pdflscape}
\usepackage[noabbrev,nameinlink]{cleveref} 

\usepackage[margin=25mm]{geometry}
\usepackage{graphicx}
\usepackage{tabularray}
\UseTblrLibrary{booktabs}

\begin{document}

\begin{table}
\caption{Sample Table}
\footnotesize\sffamily
\begin{tblr}{colsep= 3pt,
             colspec={@{}r c X[2, l] X[1.5,l] X[l] X[l] @{}},
             row{1} = {font=\bfseries, c, m},
             rowsep= 3pt
             }
    \toprule
\textbf {Publishing \\date} & \textbf {Ref No.} & \textbf {Applied model} & \textbf {Dataset} & \textbf {Number of Outcomes (M)} & \textbf {Results (avg)} \\
    \midrule

2011 & \cite{--------} & ABCDEFG;AAAAAA and AAAAAAA & FFFFFFFFFFFFFFFF & ---  & 100\% \\

2011  & \cite{-------------} & Lightweight DCNN and Mask-RCNN & Greenhouse live TJ-Tomato and PlantVillage & --- & 100\% \\

2011  & \cite{---------} & DCNN & PlantVillage & 100 & 100\% \\

2011  & \cite{----------} & ResNet50; InceptionV2; MobileNetV1 & Deep transfer learning system dataset & --- & 100\% \\

2012 & \cite{-----------} & Concatenated residual networks (ComNet), VGGNet, AlexNet, ResNet, Xception, and MobileNet & PlantVillage and tea diseases dataset & 9.66 & 92.02\% and 86.17\% \\

2012 & \cite{-----------} & Pre-trained VGG-16, ResNet, GoogLeNet, Inception-v3, LeNet & Paddy field images & 14.81  & 95.89\% \\

2012  & \cite{-------------} & Hybrid DenseNet and Xception (XDNet); Inception-v3, MobileNet, VGG16, DenseNet201, Xception, VGG-INCEP & Apple leaf diseases & 10.16 & 95.82\% \\

2012  & \cite{--------} & DCNN, Inception-V3, ResNet-50, NasNet-Large, DenseNet-121 & Hydroponic experiments & 23.9; 26.7; 84.9; 8.1 & 80.67\%; 82.15\%; 86.25\%; 87.44\% \\

2012 & \cite{---------} & DCNN and MobileNetV2 & Maize FAW infested leaves, cobs and tassels dataset & ---  & 92\% \\ 

2012 & \cite{---------} & DCNN and YOLOV4 & Google images dataset & --- & 84\% and 95\%\\ 

2021  & \cite{------------} & DCNN, ANN, SVM, and K-NN & Paddy diseases dataset & --- & 94.08\% \\

2012  & \cite{------------} & VGG16, SVM, K-Means, K-means with SVM, Decision tree & Rice disease dataset & --- & 97\% \\ 

2012 & \cite{-------} & DCNN, Inception V3, ZF-Net, TextCNN and bidirectional gated recurrent unit (BiGRU); support vector machine (SVM), and extreme learning machine (ELM) models & Rice leaves dataset & ---  & 98.58\% \\

2012 & \cite{----------} & DCCN, i.e., Custom-Net, Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19 & Pearl millet infected with blast and rust dataset & 0.79; 5.44; 2.19; 23.80; 20.09; 14.78 & 84\% and 98.15\% \\

2012  & \cite{----------} & DCNN, ANN, SVM, and K-NN & PlantVillage & --- & 98.42\% \\

2012 & \cite{-----------} & AlexNet, SqueezeNet, GoogLeNet, ResNet-50, and ResNet-101 & Pearl millet infected with blast and Guava disease dataset & --- & 96.01\% \\

2012 & \cite{-----------} & AlexNet, GoogleNet, VGG16, and VGG19 & Healthy and infected maize dataset & ---  & 99.94\% \\

2012  & \cite{-----------} & DCNN, SVM, Decision tree, Linear Regression, K-NN, AlexNet, ResNet, VGG16, InceptionV3 & Alternaria Leaf Spot (ALS) disease dataset & --- & 98.41\% \\

2012  & \cite{---------} & YOLO-V5, VGG-16, AlexNet, ResNet-50, ResNet-101, DenseNet-121 and Bidirectional Cross-Modal Transformer (BiCMT) & Xiaotangshn National Precision Agriculture Demonstration Base dataset & --- & 96.92\% \\

2012  & \cite{--------} & YEYEYEYE, VGG16, VGG19, MobileNetV2, DHDHDHHDD, ResNet-V2, NasNetMobile, Inception-V3 and InceptionResNetV2 & Tipburn Disorder Detection in Strawberry Leaves dataset & 1.008; ;134.27; 139.578; 0.23; 7.77; 21.81; 58.34; 54.34; 4.27 & 96.03\% \\

    \bottomrule
\end{tblr}
    \end{table}

\end{document}

enter image description here

As if
  • 23
  • 5

1 Answers1

3

Welcome to TeX.SE!

Try to make columns with short text in cell make narrower and column with text in several lines, wider. By use of the tabularray package this can be easily done:

\documentclass{article}
\usepackage[margin=25mm]{geometry}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%

\usepackage{graphicx} \usepackage{tabularray} \UseTblrLibrary{booktabs}

\begin{document} \begin{table} \caption{My caption} \label{my-label} \footnotesize\sffamily \begin{tblr}{colsep= 4pt, colspec={@{}r c X[2, l] X[1.5,l] X[l] X[l] @{}}, row{1} = {font=\bfseries, c, m}, rowsep=3pt } \toprule Yea & SL No. & DL model & Dataset & {No. of\ parameter (M)} & {Accuracy (Avg)} \ \midrule 1000 & \cite{1} & Matrix-based CNN; AlexNet and VGG-16 & Winter wheat leaf diseases images & --- & 93.1% \ 2000 & \cite{2} & Lightweight DCNN and Mask-RCNN & Greenhouse live TJ-Tomato and PlantVillage & --- & 93.61% \ 3000 & \cite{3} & DCNN & PlantVillage & 0.766 & 93.03% \ 4000 & \cite{4} & ResNet50; InceptionV2; MobileNetV1 & Deep transfer learning system dataset & --- & 91% \ 5020 & \cite{5} & Concatenated residual networks (ComNet), VGGNet, AlexNet, ResNet, Xception, and MobileNet & PlantVillage and tea diseases dataset & 98.10 & 90.41% and 86.17% \ 20000 & \cite{6} & Pre-trained VGG-16, ResNet, GoogLeNet, Inception-v3, LeNet & Paddy field images & 14.81 & 93.13% \ 1111 & \cite{7} & Hybrid DenseNet and Xception (XDNet); Inception-v3, MobileNet, VGG16, DenseNet201, Xception, VGG-INCEP & Apple leaf diseases & 10.16 & 91.02% \ 5643 & \cite{8} & DCNN, Inception-V3, ResNet-50, NasNet-Large, DenseNet-121 & Hydroponic experiments & 23.9; 26.7; 84.4; 8.1 & 41.67%; 95.15%; 76.25%; 27.44% \ 8356 & \cite{9} & DCNN and MobileNetV2 & Maize FAW infested leaves, cobs and tassels dataset & --- & 97% \ 8989 & \cite{10} & DCNN and YOLOV4 & Google images dataset & --- & 94% and 45% \ 4312 & \cite{11} & DCNN, ANN, SVM, and K-NN & Paddy diseases dataset & --- & 94.08% \ 7865 & \cite{12} & VGG16, SVM, K-Means, K-means with SVM, Decision tree & Rice disease dataset & --- & 92% \ 7878 & \cite{13} & DCNN, Inception V3, ZF-Net, TextCNN and bidirectional gated recurrent unit (BiGRU); support vector machine (SVM), and extreme learning machine (ELM) models & Rice leaves dataset & --- & 92.58% \ 4321 & \cite{14} & DCCN, i.e., Custom-Net, Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19 & Pearl millet infected with blast and rust dataset & 0.79; 5.44; 2.19; 23.80; 20.09; 14.78 & 84% and 98.15% \ 4444 & \cite{15} & DCNN, ANN, SVM, and K-NN & PlantVillage & --- & 91.42% \ 6543 & \cite{16} & AlexNet, SqueezeNet, GoogLeNet, ResNet-50, and ResNet-101 & Pearl millet infected with blast and Guava disease dataset & --- & 96.74% \ 3456 & \cite{17} & AlexNet, GoogleNet, VGG16, and VGG19 & Healthy and infected maize dataset & --- & 96.94% \ 3432 & \cite{18} & DCNN, SVM, Decision tree, Linear Regression, K-NN, AlexNet, ResNet, VGG16, InceptionV3 & Alternaria Leaf Spot (ALS) disease dataset & --- & 98.41% \ 9743 & \cite{19} & YOLO-V5, VGG-16, AlexNet, ResNet-50, ResNet-101, DenseNet-121 and Bidirectional Cross-Modal Transformer (BiCMT) & Xiaotangshn National Precision Agriculture Demonstration Base dataset & --- & 96.92% \ 3432 & \cite{19} & PSO-CNN, VGG16, VGG19, MobileNetV2, EfficientNet, ResNet-V2, NasNetMobile, Inception-V3 and InceptionResNetV2 & Tipburn Disorder Detection in Strawberry Leaves dataset & 1.008; ;134.27; 139.578; 0.23; 7.77; 21.81; 58.34; 54.34; 6.27 & 67.73% \ \bottomrule \end{tblr} \end{table} \end{document}

Compilation result obtained in Overleaf:

enter image description here

(red lines indicate page layout)

Addendum:
Converting to long table:

\documentclass{article}
\usepackage[margin=25mm]{geometry}
%---------------- show page layout. don't use in a real document!
\usepackage{showframe}
\renewcommand\ShowFrameLinethickness{0.15pt}
\renewcommand*\ShowFrameColor{\color{red}}
%---------------------------------------------------------------%

\usepackage{graphicx} \usepackage{tabularray} \UseTblrLibrary{booktabs}

\begin{document} \begingroup \small\sffamily\linespread{0.92}\selectfont \begin{longtblr}[ caption = {My caption}, label = {my-label} ]{rowhead = 1, colsep= 4pt, colspec={@{}r c X[2, l] X[1.5,l] X[l] X[l] @{}}, row{1} = {font=\bfseries, c, m}, rowsep=2pt } \toprule Yea &{SL\ No.}& {DL\ model} & Dataset & {No. of\ parameter (M)} & {Accuracy\ (Avg)} \ \midrule % % table body is the same as before %

enter image description here

Zarko
  • 296,517
  • Still, the table is not fitted on the single page @Zarko – As if Nov 04 '22 at 05:49
  • @Asif, as you can see on image shown in answer, it is on one page. Show us in edited question, how you test my unswer.If you not get the same result, than you change something in my code or the table content is not the same. – Zarko Nov 04 '22 at 08:37
  • It is not working and is fitted to a single code, so I attached a sample for better clarification. Is there any mistake in my document since I use the line number package to count the sentences? However, I skip this package for this certain. @Zarko – As if Nov 04 '22 at 10:16
  • I attached here a sample table with a margin. Could You help me to sort out this issue? @Zarko – As if Nov 04 '22 at 13:40
  • @Asif, please do the following: (i) extend/complete code fragment in your question to compilable small document, which we can test as it is (ii) it seems, that you show part of MWE from my answer; it will be nice, to say so., (iii) in my answer I show you result of compilation of my MWE in Overleaf, (iv) testing your code fragment in small document using \documentclass{article} gives the same result as is shown in my answer. I will check you MWE immediately when it will be available. – Zarko Nov 04 '22 at 13:53
  • Could You please help me to solve this issue? I am still suffering from it. The table is well fitted only in any other single page, but while I would like to add it in a full document, it is still like the attached file. Please do Your favour @Zarko – As if Nov 14 '22 at 12:41
  • @Asif, I can't help you more as already did. I haven't any information about your document, specially about its preamble (which seems to differ from preamble used in answer) , where image is inserted etc. Size of table require full page, so its placement option should be [p] (so far I didn't add it). Sory, my crystal ball is out in order, so I can't see your document ;-). Please edit your question and provide complete small document with some dummy text (generate with ˙lipsum` or similar package) which reproduce your problem. This may give a chance anyone that will be able to help you. – Zarko Nov 14 '22 at 13:46
  • I updated my question with all the packages I applied to my manuscript. Maybe it is now more precise. Could You help me, please @Zarko – As if Nov 15 '22 at 09:02
  • @Asif, cause of your problems is used font size. In original question was anticipated default 10pt but your document you use 12pt. This can be compensated by reducing font size in table, from \footnotesize to \scriptsize. But this will make it worse readable. I don't know, if this is acceptable to you. BTW, you cannot put an elephant in lady suitcase :-(. You should consider to split table over two pages by using longtblr table. – Zarko Nov 15 '22 at 09:34
  • Could You please assist me in sharing the code for a split table over the two pages? @Zarko – As if Nov 22 '22 at 11:12
  • @Asif, this is actually new question ... See addendum to answer. Now you may consider to accept answer (by clicking on the check mark at top left side of answer). – Zarko Nov 22 '22 at 11:50