-1

I am trying to compile the below in overleaf (It is a very reduced version of my original doc). It is giving me 2 errors:

Error 1: LaTeX Error: Something's wrong--perhaps a missing \item. (line 317)

Error 2: Extra }, or forgotten \endgroup. (line 372)

\documentclass[journal,draftcls,onecolumn,12pt,twoside]{IEEEtranTCOM}
%
% If IEEEtran.cls has not been installed into the LaTeX system files,
% manually specify the path to it like:
% \documentclass[journal]{../sty/IEEEtran}

\normalsize

\usepackage[noadjust]{cite}

% *** GRAPHICS RELATED PACKAGES *** % \ifCLASSINFOpdf % \usepackage[pdftex]{graphicx} % declare the path(s) where your graphic files are % \graphicspath{{../pdf/}{../jpeg/}} % and their extensions so you won't have to specify these with % every instance of \includegraphics % \DeclareGraphicsExtensions{.pdf,.jpeg,.png} \else % or other class option (dvipsone, dvipdf, if not using dvips). graphicx % will default to the driver specified in the system graphics.cfg if no % driver is specified. % \usepackage[dvips]{graphicx} % declare the path(s) where your graphic files are % \graphicspath{{../eps/}} % and their extensions so you won't have to specify these with % every instance of \includegraphics % \DeclareGraphicsExtensions{.eps} \fi

% graphicx was written by David Carlisle and Sebastian Rahtz. It is % required if you want graphics, photos, etc. graphicx.sty is already % installed on most LaTeX systems. The latest version and documentation can % be obtained at: % http://www.ctan.org/tex-archive/macros/latex/required/graphics/

\usepackage{algorithm} \usepackage{algpseudocode}

\hyphenation{op-tical net-works semi-conduc-tor} \raggedbottom

\usepackage{textcomp} \usepackage{pgfplots} \usepackage{float} \usepackage[compact]{titlesec} \usepackage{relsize} %\usepackage{interval} \usepackage{booktabs, longtable, multirow, supertabular, tabularx} \renewcommand{\arraystretch}{1.5} \newcolumntype{P}[1]{>{\centering\hspace{0pt}\arraybackslash}p{#1}} \newcolumntype{M}[1]{>{\centering\hspace{0pt}\arraybackslash}m{#1}} \newcolumntype{L}{>{\centering\arraybackslash}m{3cm}} \newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}} \usepackage{cite} \def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}} \usepackage{textcomp} \let\labelindent\relax \usepackage{enumitem} \setlist{nolistsep,leftmargin=.6cm} \usepackage{bbm} %\usepackage{breqn} \usepackage{amsmath, amssymb, amsthm} \usepackage{psfrag} \usepackage{graphicx} \usepackage{tikz} \usetikzlibrary{arrows.meta, fit, positioning, quotes}

\usepackage{cuted} %\usepackage{soul} %didn't have package _ojas \usepackage[font=small]{caption} \usepackage{pbox} \usepackage{filecontents} \newcommand{\ind}{\perp!!!!\perp} \begin{document} \newtheorem{proposition}{Proposition} \newtheorem{definition}{Definition} \newtheorem{lemma}{Lemma} \newtheorem{theorem}{Theorem} \newtheorem{theorem}{Theorem} \newtheorem{corollary}{Corollary} \newtheorem{assumption}{Assumption} \newtheorem{claim}{Claim} % % paper title % can use linebreaks \ within to get better formatting as desired \title{abcd efgh ijkl } % % % author names and IEEE memberships % note positions of commas and nonbreaking spaces ( ~ ) LaTeX will not break % a structure at a ~ so this keeps an author's name from being broken across % two lines. % use \thanks{} to gain access to the first footnote area % a separate \thanks must be used for each paragraph as LaTeX2e's \thanks % was not built to handle multiple paragraphs %

\author{a~Ro,~\IEEEmembership{asd,~IEEE,} f~ip,~\IEEEmembership{g,~IE}% <-this % stops a space \thanks{asd. }% <-this % stops a space %This work is partly supported by NSF grant "tobeadded" and NYU WIRELESS Industrial affiliates. }

% The paper headers \markboth{IEEE Transactions on Communications}% {Submitted paper}

% make the title area \maketitle

\vspace{-1cm} \begin{abstract} %\boldmath

\end{abstract} % IEEEtran.cls defaults to using nonbold math in the Abstract. % This preserves the distinction between vectors and scalars. However, % if the journal you are submitting to favors bold math in the abstract, % then you can use LaTeX's standard command \boldmath at the very start % of the abstract to achieve this. Many IEEE journals frown on math % in the abstract anyway.

% Note that keywords are not normally used for peerreview papers. \begin{IEEEkeywords}

\end{IEEEkeywords}

% For peer review papers, you can put extra information on the cover % page as needed: % \ifCLASSOPTIONpeerreview % \begin{center} \bfseries EDICS Category: 3-BBND \end{center} % \fi % % For peerreview papers, this IEEEtran command inserts a page break and % creates the second title. It will be ignored for other modes. \IEEEpeerreviewmaketitle

\section{System model}~\label{sec:sysmodl}

\subsection{asfgjkfd}

models. In adaptive GT, the previous test results can be used to design the future tests. In non-adaptive setting, all group tests are designed independent of each other.

$\textbf{X}^{i} \in {0,\sqrt{P}}^{n}, \forall i \in \mathcal{D}$. The BS measures received energy during each channel-use and produces a binary 0-1 output $Z_t$ as in (\ref{threshold}). These 1-bit energy measurements at the receiver side corresponds to the group test results.

framework corresponds to non-adaptive GT since the testing/grouping pattern is based on predefined binary preambles and is not updated based on the GT results of previous channel-uses. We will observe in Section \ref{sec3} that the GT model can be leveraged to provide an achievability scheme to the minimum user identification cost for the non-coherent $(\ell,k)-$MnAC when $\alpha = 0 $, ie., $k= O(1)$ and a corresponding lower bound when $\alpha \neq 0 $.

\section{dfhjlu}
\label{sec3}

em in a point-to-point vector input - scalar output channel whose inputs correspond to the active users as shown in Fig. \ref{fig:redalpha}. Thereafter, we derive the maximum rate of the equivalent channel by exploiting its cascade structure. \subsection{Efghk} \vspace{0.05cm}

Considering the channel in Fig. 1, since the set of active users is $\mathcal{A}={a_1,\ldots a_k}$, the input to the non-coherent $(\ell,k)-$MnAC is $\Tilde{\textbf{X}}=(X^{a_1},\ldots X^{a_k})$. Thus, the signal at the input of envelope detector is $ S=\sqrt{P}\sum_{m=1}^{k}h^{a_m} +W.$ Let $V=\frac{\sum_{i=1}^{k}X^{a_i}}{\sqrt{P}}$ denote the Hamming weight of $\Tilde{\textbf{X}}$ which is the number of active users transmitting `On' signal during the particular channel-use we have at hand. Thus, conditioned on $V=v$, $U:=|S|^{2}$ follows an exponential distribution given by \begin{equation} f_{U|V}(u|v)=\frac{1}{v \sigma^{2}P+\sigma_{w}^{2}} e^{-\frac{u}{v \sigma^{2}P+\sigma_{w}^{2}}}, u \geq 0. \label{expdis} \end{equation} As evident from (\ref{threshold}) and (\ref{expdis}), we have $\Tilde{\textbf{X}} \rightarrow V\rightarrow Z$, i.e., the transition probability $p\left(z\mid \Tilde{\textbf{x}},v\right)$ is only dependent on the channel input $\Tilde{\textbf{X}}=(X^{a_1},X^{a_2},\ldots X^{a_k})$ through its Hamming weight $V$. Also, since $ f_{U|V}$ is an exponential distribution, $p_v:=p\left(Z=0\mid V=v\right)$ can be expressed as \begin{equation} p_v=1-e^{-\frac{\gamma}{v \sigma^{2}P+\sigma_{w}^{2}}}. \label{channeleq} \end{equation} Similarly, $\operatorname{Pr}\left(Z=1\mid V=v\right)=1-p_v.$ Note that $p_v$ is a strictly decreasing function of $v$ where $v \in{0,1,..,k}$ assuming w.l.o.g. positive values for $\sigma^2, \sigma_w^2$ and $\gamma$.

Thus, the non-coherent $(\ell,k)-$MnAC can be equivalently viewed as a traditional point-to-point communication channel whose input is the active user set as in Fig. \ref{fig:redalpha}. Moreover, this equivalent channel can be modeled as a cascade of two channels; the first channel computes the Hamming weight $V$ of the input $\Tilde{\textbf{X}}$ whereas the second channel translates the Hamming weight $V$ into a binary output $Z$ depending on the fading statistics $(\sigma^2)$, noise variance $(\sigma_w^2)$ of the wireless channel and the non-coherent detector threshold $\gamma$. We exploit this cascade channel structure to establish the minimum user identification cost $n(\ell)$ for the non-coherent $(\ell,k)-$MnAC.

\begin{figure}
\centering \resizebox{4.5in}{!}{

\tikzset{every picture/.style={line width=1.4pt}} %set default line width to 0.75pt

\begin{tikzpicture}[x=.9pt,y=.85pt,yscale=-1,xscale=1.1] %uncomment if require: \path (0,341); %set diagram left start at 0, and has height of 341

%Shape: Rectangle [id:dp43249060131829475] \draw (59.92,86.98) -- (92.32,86.98) -- (92.32,119.45) -- (59.92,119.45) -- cycle ; %Shape: Rectangle [id:dp028664217117475133] \draw (59.92,131.79) -- (92.32,131.79) -- (92.32,167.63) -- (59.92,167.63) -- cycle ; %Shape: Rectangle [id:dp24677447546416165] \draw (59.92,221.39) -- (92.32,221.39) -- (92.32,257.23) -- (59.92,257.23) -- cycle ; %Straight Lines [id:da6482578057588197] \draw [dash pattern={on 1.84pt off 2.51pt}] (76.25,175.25) -- (76.77,216.83) ; %Straight Lines [id:da9495314852330665] \draw (92.82,145.23) -- (145.76,145.95) ; \draw [shift={(147.76,145.97)}, rotate = 180.78] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da3301990043391969] \draw (91.83,239.31) -- (144.78,240.03) ; \draw [shift={(146.78,240.06)}, rotate = 180.78] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da752592611698061] \draw (92.82,107.59) -- (145.76,108.31) ; \draw [shift={(147.76,108.34)}, rotate = 180.78] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Shape: Rectangle [id:dp4158459894145996] \draw (155.99,80.56) -- (262.26,80.56) -- (262.26,259.77) -- (155.99,259.77) -- cycle ; %Straight Lines [id:da13424438634055003] \draw (263.57,96.84) -- (285.26,96.7) ; \draw [shift={(287.26,96.69)}, rotate = 179.64] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da3432111888935394] \draw (263.57,116.55) -- (285.26,116.42) ; \draw [shift={(287.26,116.4)}, rotate = 179.64] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da19164064738653108] \draw (263.57,250.06) -- (285.26,249.92) ; \draw [shift={(287.26,249.91)}, rotate = 179.64] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da9490949605319441] \draw [dash pattern={on 0.84pt off 2.51pt}] (310.95,137.91) -- (310.95,147.77) -- (310.95,158.52) ; %Straight Lines [id:da9490949605319441] \draw [dash pattern={on 0.84pt off 2.51pt}] (280.95,50.91) -- (280.95,248.52) ; %Shape: Ellipse [id:dp20982408072422865] \draw (468.87,104.91) .. controls (468.87,92.53) and (479.92,82.5) .. (493.55,82.5) .. controls (507.18,82.5) and (518.22,92.53) .. (518.22,104.91) .. controls (518.22,117.28) and (507.18,127.31) .. (493.55,127.31) .. controls (479.92,127.31) and (468.87,117.28) .. (468.87,104.91) -- cycle ; %Shape: Ellipse [id:dp5362449055680822] \draw (470.85,235.73) .. controls (470.85,223.35) and (481.89,213.32) .. (495.52,213.32) .. controls (509.15,213.32) and (520.2,223.35) .. (520.2,235.73) .. controls (520.2,248.1) and (509.15,258.13) .. (495.52,258.13) .. controls (481.89,258.13) and (470.85,248.1) .. (470.85,235.73) -- cycle ; %Straight Lines [id:da7658409443650374] \draw (321.81,91.32) -- (473.41,249.36) ; \draw [shift={(474.79,250.81)}, rotate = 226.19] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da26021731637003764] \draw (322.79,118.2) -- (473.29,249.49) ; \draw [shift={(474.79,250.81)}, rotate = 221.1] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da5122873809718536] \draw (324.77,250.81) -- (472.79,250.81) ; \draw [shift={(474.79,250.81)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da32310611897204766] \draw (322.79,118.2) -- (472.82,91.66) ; \draw [shift={(474.79,91.32)}, rotate = 169.97] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da35509056386410176] \draw (321.81,91.32) -- (472.79,91.32) ; \draw [shift={(474.79,91.32)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da1321281387990918] \draw (324.77,250.81) -- (473.42,92.77) ; \draw [shift={(474.79,91.32)}, rotate = 133.25] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Shape: Rectangle [id:dp8502914470602687] \draw (301.08,80.56) -- (319.83,80.56) -- (319.83,259.77) -- (301.08,259.77) -- cycle ; %Straight Lines [id:da31677480479958064] \draw [dash pattern={on 0.84pt off 2.51pt}] (310.95,200.63) -- (310.95,210.49) -- (309.96,233.78) ; %Straight Lines [id:da017773812738619554] \draw (322.79,171.96) -- (473.03,92.25) ; \draw [shift={(474.79,91.32)}, rotate = 152.05] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Straight Lines [id:da6131006224913382] \draw (322.79,171.96) -- (473.02,249.89) ; \draw [shift={(474.79,250.81)}, rotate = 207.42] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ; %Rounded Rect [id:dp3516142081859148] \draw [fill={rgb, 255:red, 155; green, 155; blue, 155 } ,fill opacity=0.23 ] (119.47,103.11) .. controls (119.47,79.36) and (138.72,60.1) .. (162.48,60.1) -- (402.17,60.1) .. controls (425.93,60.1) and (445.18,79.36) .. (445.18,103.11) -- (445.18,232.14) .. controls (445.18,255.89) and (425.93,275.15) .. (402.17,275.15) -- (162.48,275.15) .. controls (138.72,275.15) and (119.47,255.89) .. (119.47,232.14) -- cycle ;

% Text Node \draw (165,104.4) node [anchor=north west][inner sep=0.75pt] [font=\huge] {$\frac{\sum {i=1}^{k}X{t}^{a_{i}}}{\sqrt{P}}$}; % Text Node \draw (156,189) node [anchor=north west][inner sep=0.75pt] [font=\large] [align=left] {{\large \ \ \ Hamming }\[-10pt] {\large \ \ \ weight $(V)$}\[-10pt] {\large \ computation}}; % Text Node \draw (28,32) node [anchor=north west][inner sep=0.75pt] [font=\small] [align=left] {{\large Channel input}\{\large $\displaystyle \ \ \ \ \ \ \ \ \Tilde{\textbf{X}}$}}; % Text Node \draw (220.53,30.96) node [anchor=north west][inner sep=0.75pt] [font=\large] {{Hamming weight}\{\ \ $V$}}; % Text Node \draw (487.53,95.96) node [anchor=north west][inner sep=0.75pt] [font=\LARGE] {$0$}; % Text Node \draw (488.53,225.39) node [anchor=north west][inner sep=0.75pt] [font=\LARGE] {$1$}; % Text Node \draw (421,32) node [anchor=north west][inner sep=0.75pt] [font=\large] [align=left] {{\large Channel Output}\{\large $\displaystyle \ \ \ \ \ \ \ \ \ \ Z$}}; % Text Node \draw (48.2,284.73) node [anchor=north west][inner sep=0.75pt] [font=\large] {$active\ user\ set:\ {a_{1} ,a_{2} ,\dotsc ,a_{k} }$}; % Text Node \draw (306.92,168.09) node [anchor=north west][inner sep=0.75pt] {$i$}; % Text Node \draw (328.51,150.22) node [anchor=north west][inner sep=0.75pt] [font=\large,rotate=-332.77] {$p_{i}$}; % Text Node \draw (329.93,176.77) node [anchor=north west][inner sep=0.75pt] [font=\large,rotate=-29.2] {$1-p_{i}$}; % Text Node \draw (49.02,302.55) node [anchor=north west][inner sep=0.75pt] [font=\large] {$X^{a_{i}} \in {0,\sqrt{P}}$}; % Text Node \draw (348.88,282.21) node [anchor=north west][inner sep=0.75pt] [font=\Large] {$p_{i} =1-e^{-\frac{\gamma}{i\sigma ^{2}P +\sigma {w}^{2}}}$}; % Text Node \draw (61.92,90.38) node [anchor=north west][inner sep=0.75pt] [font=\large] {$X^{a{1}}$}; % Text Node \draw (60.03,226.07) node [anchor=north west][inner sep=0.75pt] [font=\large] {$X^{a_{k}}$}; % Text Node \draw (60.74,135.53) node [anchor=north west][inner sep=0.75pt] [font=\large] {$X^{a_{2}}$}; % Text Node \draw (306.92,240.67) node [anchor=north west][inner sep=0.75pt] {$k$}; % Text Node \draw (305.94,110.75) node [anchor=north west][inner sep=0.75pt] {$1$}; % Text Node \draw (305.94,88.35) node [anchor=north west][inner sep=0.75pt] {$0$}; \end{tikzpicture} } \setlength{\belowcaptionskip}{-38pt} \caption{Equivalent channel with only the active users of the $(\ell,k)-$MnAC as inputs.} \label{fig:redalpha} \end{figure}

\subsection{ Maximum rate of the equivalent channel}

\begin{lemma} For a given fading statistics $\sigma^2$, noise variance $\sigma_w^2$, and non-coherent detector threshold $\gamma$ for the $(\ell,k)$-MnAC, the maximum rate of the equivalent point-to-point channel in Fig. \ref{fig:redalpha} is \begin{equation} C=\max_{(\gamma,q_{sp})}h\Big(E\Big[e^{-\frac{\gamma}{V \sigma^{2}P+\sigma_{w}^{2}}}\Big]\Big)-E\Big[h\Big(e^{-\frac{\gamma}{V \sigma^{2}P+\sigma_{w}^{2}}}\Big)\Big] \label{jengap2} \end{equation} where $E(\cdot)$ denotes expectation w.r.t $ V$, $h(x)=-x \log x-(1-x) \log (1-x)$ is the binary entropy function and $q_{sp}$ denotes the optimal sampling probability used for i.i.d preamble generation across all users. \label{lem1} \end{lemma} \begin{proof} The equivalent point-to-point communication channel in Fig. \ref{fig:redalpha} has two tunable parameters, viz, the sampling probability vector $\textbf{q} ={q_{a_1} \ldots q_{a_k}}$ at the user side and the non-coherent detector threshold $\gamma$ at the BS. Thus, the maximum rate of this equivalent channel between the binary vector input $\Tilde{\textbf{X}}$ and binary scalar output $Z$ is
completing the proof.\end{proof}

\vspace{-0.3cm}\subsection{st}

where $n(\ell)$ is as given in Theorem 1. This is because $C$ in Lemma 1 is smaller than $\frac{1}{2}\log (1+ kP_{av})$ where $P_{av}:= q_{sp}^P$, with $ q_{sp}^$ being the optimal $ q_{sp}$ in Theorem 1. Clearly, the user identification in a Gaussian MnAC requires lesser number of channel uses due to the fact that the model does not incorporate fading and is not constrained to OOK signaling and non-coherent detection as in our non-coherent $(\ell,k)-$MnAC. \section{Pghhjkkkff}

\begin{definition} \textbf{ $\zeta % -$ partial recovery}: For a true active set $\mathcal{A}$ and an estimated active set $\hat{\mathcal{A}}$, consider an error event $E_1$ defined as \begin{equation} E_1 := \left{\left|\hat{\mathcal{A}}^{\mathrm{c}} \cap \mathcal{A}\right| > k\left(1-\frac{\zeta}{100}\right) \right}. \label{errev} \end{equation} We have $\zeta %$-partial recovery, if \begin{equation} \mathbb{P}{e,\zeta}^{(\ell)}:= P( E_1) \rightarrow 0 \text { as } \ell \rightarrow \infty, \nonumber \end{equation} where $\mathbb{P}{e,\zeta}^{(\ell)}$ denotes the probability of error for $\zeta % -$ partial recovery. Probability of successful identification for $\zeta % -$ recovery is defined as $\mathbb{P}{succ,\zeta}^{(\ell)}:= 1 -\mathbb{P}{e,\zeta}^{(\ell)}.$

\end{definition}

The error event $E_1$ considers if the fraction of true active devices in $\mathcal{A}$ that are misdetected exceeds $\left(1-\frac{\zeta}{100}\right)$. Note that since our proposed strategies output a set of size $k$, both false positives and misdetections occur in equal numbers. Thus, the error event $E_1$ in (\ref{errev}) is essentially equivalent to $\left{\left|\hat{\mathcal{A}}^{\mathrm{c}} \cap \mathcal{A}\right| > k\left(1-\frac{\zeta}{100}\right) \bigcup \left|\hat{\mathcal{A}} \cap \mathcal{A}^c\right| > k\left(1-\frac{\zeta}{100}\right) \right}$. Moreover, when $\zeta = 100$, the partial recovery setting boils down to our original setting of exact recovery given in Def. 2. The case when the number of active users $k$ is unknown at the BS will be discussed in Section IV.C.

\subsection{N-COMP based user identification}

primarily analyzed in the context of symmetric noise models wherein errors in test results are equally likely \cite{6120373,6763117}. r is \cite{4797638} where the focus is on the problem of neighbor discovery in a wireless sensor network rather than the massive random access setting considered in this paper.

Let $\mathcal{G}i:=\frac{\sum{t=1}^{n}X^{i}t}{\sqrt{P}$ denote the Hamming weight of $\textbf{X}^{i}$, the ymbols if it is in active state. Let $\mathcal{R}_i:=\frac{\sum{t=1}^{n}X^{i}_tZ_t}{\sqrt{P}}$ denote the number of these channel uses in which the received energy at the detector exceeds a predetermined threshold. In N-COMP based user identification, our strategy is to classify the $k$

\begin{figure} \centering \begin{minipage}{.5\textwidth} \centering \begin{tikzpicture} \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.3cm 0.55cm 0 0},clip]{ICASSP_NCOMP_EXACT.png}}}% get width and height \node[above right,inner sep=0pt] at (0,0) {\usebox{0}}; \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}}; \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\normalsize{Probability of successful identification}}; \end{tikzpicture} \setlength{\belowcaptionskip}{-15pt} \caption{NCOMP: Exact recovery for $(1000,25)$-MnAC. } \label{fig:2usercap1} \end{minipage}%
\begin{minipage}{.5\textwidth} \centering \begin{tikzpicture} \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.3cm 0.55cm 0 0},clip]{ICASSP_NCOMP_90perc.png}}% get width and height \node[above right,inner sep=0pt] at (0,0) {\usebox{0}}; \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}}; \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\normalsize{Probability of successful identification}}; \end{tikzpicture} \setlength{\belowcaptionskip}{-15pt} \caption{NCOMP: 90$%$ recovery for $(1000,25)$-MnAC. } \label{fig:2usercap2} \end{minipage} \end{figure} \subsection{BP based user identification}

\begin{figure}
\centering \begin{minipage}{.5\textwidth} \begin{tikzpicture} \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.4cm 0.8cm 0 0},clip]{BP_STvsNCOMP_exact.png}}% get width and height \node[above right,inner sep=0pt] at (0,0) {\usebox{0}}; \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}}; \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}}; \end{tikzpicture} \setlength{\belowcaptionskip}{-15pt} \caption{\footnotesize{Exact recovery: $(1000,25)$-MnAC at SNR = 10 dB.}} \label{fig:z5} \end{minipage}% \begin{minipage}{.5\textwidth} \centering \begin{tikzpicture} \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.4cm 0.8cm 0 0},clip]{BP_STvsNCOMP_90.png}}% get width and height \node[above right,inner sep=0pt] at (0,0) {\usebox{0}}; \node[black] at (0.5\wd0,-0.06\ht0) {\normalsize{Number of channel-uses, $n$}}; \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}}; \end{tikzpicture} \setlength{\belowcaptionskip}{-15pt} \caption{\footnotesize{$90%$ recovery: $(1000,25)$-MnAC at SNR = 10 dB.} } \label{fig:z6} \end{minipage} \end{figure}

\begin{figure}
\centering \begin{tikzpicture} \sbox0{\includegraphics[width=.55\linewidth,height=70mm,trim={1.4cm 0.8cm 0 0},clip]{BP_ST_SHT_AHT_exact_10dB.png}}% get width and height \node[above right,inner sep=0pt] at (0,0) {\usebox{0}}; \node[black] at (0.5\wd0,-0.06\ht0) {\small{\small{Number of channel-uses $n$}}}; \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}}; \end{tikzpicture} \setlength{\belowcaptionskip}{-25pt} \caption{ Comparison of various BP algorithms for exact recovery in $(1000,25)$-MnAC at SNR $=$ 10 dB. } \label{fig:q4} \end{figure} \begin{figure}
\centering \begin{tikzpicture} \sbox0{\includegraphics[width=.55\linewidth,height=70mm,trim={1.4cm 0.8cm 0 0},clip]{BP_ST_SHT_AHT_90_10dB.png}}% get width and height \node[above right,inner sep=0pt] at (0,0) {\usebox{0}}; \node[black] at (0.5\wd0,-0.06\ht0) {\small{\small{Number of channel-uses $n$}}}; \node[black,rotate=90] at (-0.04\wd0,0.5\ht0) {\small{Probability of successful identification}}; \end{tikzpicture} \setlength{\belowcaptionskip}{-25pt} \caption{ Comparison of various BP algorithms for $90%$ recovery in $(1000,25)$-MnAC at SNR $=$ 10 dB. } \label{fig:q5} \end{figure}

\section{a} t.

\bibliographystyle{IEEEtranTCOM}

\bibliography{IEEE_TCOM}

\end{document}

I found that line 372 \sbox0{\includegraphics[width=.9\linewidth,height=65mm,trim={1.3cm 0.55cm 0 0},clip]{ICASSP_NCOMP_EXACT.png}}}% get width and height has an extra

'}' which I tried to remove. But that's not solving the issue. Can someone let me know whats wrong in my code?

IEEETranTCOM.cls is available here: https://www.comsoc.org/media/1381/download

wanderer
  • 141
  • 5
  • Can someone clarify the reason for downvote? – wanderer Mar 10 '23 at 23:44
  • 3
    @wanderer Are you sure you can't reduce this code any further? Try to comment out all sections, then comment them back in one by one. Once you localised the problematic parts, do the same for every paragraph etc. I'm sure this will allow you to locate the missing } and the superfluous } – samcarter_is_at_topanswers.xyz Mar 11 '23 at 00:07
  • 1
    First error: on line 284, you need add "[align=left]" (or center...) if you uses "\" in the text "hammer... \ $V$". Second error: usage of "\sbox0" in lines 371, 383, 402, 414, 430, 442 (LaTeX Error: Cannot determine size of graphic in ICASSP_NCOMP_EXACT.png (no BoundingBox). etc.). Note that you later uses "\wd0" and "\ht0" so if you uses other thing than "\sbox0" you need to adapt your code. – quark67 Mar 11 '23 at 00:17
  • 1
    Remove all the .png in the name of your pictures (lines 371,383,402,414,430,442), this will suppress the error about the "bounding box". Also on line 371, replace "}}}" at the end by "}}". And in line 364, replace "{\sqrt{P}" by "{\sqrt{P}}" (missing "}". – quark67 Mar 11 '23 at 00:37
  • 1
    The trick to localize source of errors when LaTeX is unable to give the exact line of the error is to comment (for exemple the error about the line 284 is reported by LaTeX on line 316 after "\end{tikzpicture}") this to comment the half of the concerned line (here between "\begin{tikzpicture}" and "\end{tikzpicture}") in order to localize the culprit line. If the error is still present, comment the half of the remaining line etc... (by dichotomy). – quark67 Mar 11 '23 at 00:47
  • "Can someone clarify the reason for downvote?": I did not downvote but I assume that your code is way too not minimal enough and indicates more of a "debug-for-me" type of question (= low effort on your side). As you can see by Werner's answer, this is indeed the case. You could have narrowed down the code much more and still exhibit the errors. – Dr. Manuel Kuehner Mar 11 '23 at 01:17

1 Answers1

2

Your errors are here:

  • Line 284: You can't have a node with a line break that doesn't also have the alignment key. Based on your code, I used [align=left]. Reference: Manual/automatic line breaks and text alignment in TikZ nodes

  • Line 364: You need have a balanced set of braces for \frac. You're missing the closing brace for the denominator in \frac{\sum_{t = 1}^n X^i_t}{\sqrt{P}}.

  • Line 371: You have an extra closing brace } with \sbox0{...}}.

Werner
  • 603,163