2

How do I pair Old Standard (for alphabets and digits) and Asana-Math (for the rest of the math) in order to write antique looking math?

1 Answers1

1

Something like this? Sample text taken from this question.

sample

\documentclass{article}
\pagestyle{empty}

\usepackage{amsmath} \DeclareMathOperator\Res{Res} \newcommand*\diff{\mathop{}!\mathup{d}}

\usepackage{amsthm} \newtheorem{theorem}{Theorem}

\usepackage{unicode-math}

\setmainfont{Old Standard} \setmathfont{Asana Math} \setmathfont{Old Standard Italic}[range=it] \setmathfont{Old Standard}[range=up] \setmathfont{Old Standard Bold Italic}[range=bfit]

\begin{document}

\begin{theorem}[Residue theorem] Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$, then [ \frac{1}{2\pi i} \int\limits_\gamma f\Bigl(x^{\mathbf{N}\in\mathbb{C}^{N\times 10}}\Bigr) = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k),. ] \end{theorem}

\begin{theorem}[Maximum modulus] Let $G$ be a bounded open set in $\BbbC$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then [ \max{, |f(z)|:z\in G^- ,} = \max{, |f(z)|:z\in \partial G ,},. ] \end{theorem}

First some large operators both in text: $\iiint\limits_{Q}f(x,y,z) \diff x \diff y \diff z$ and $\prod_{\gamma\in\Gamma_{\bar{C}}}\partial(\tilde{X}\gamma)$;
and also on display [ \iiiint\limits
{Q}f(w,x,y,z) \diff w \diff x \diff y \diff z \leq \oint_{\partial Q} f'\Biggl(\max\Biggl{ \frac{\Vert w\Vert}{\vert w^2+x^2\vert}; \frac{\Vert z\Vert}{\vert y^2+z^2\vert}; \frac{\Vert w\oplus z\Vert}{\vert x\oplus y\vert} \Biggr}\Biggr),. ]

\end{document}

mbert
  • 4,171