How do I pair Old Standard (for alphabets and digits) and Asana-Math (for the rest of the math) in order to write antique looking math?
-
Are you limited to Xe(La)TeX, or can you also work with Lua(La)TeX? – Mico May 10 '23 at 22:05
-
1Any kind of solution is welcome! – Hamza Nouar May 10 '23 at 22:07
1 Answers
Something like this? Sample text taken from this question.
\documentclass{article}
\pagestyle{empty}
\usepackage{amsmath}
\DeclareMathOperator\Res{Res}
\newcommand*\diff{\mathop{}!\mathup{d}}
\usepackage{amsthm}
\newtheorem{theorem}{Theorem}
\usepackage{unicode-math}
\setmainfont{Old Standard}
\setmathfont{Asana Math}
\setmathfont{Old Standard Italic}[range=it]
\setmathfont{Old Standard}[range=up]
\setmathfont{Old Standard Bold Italic}[range=bfit]
\begin{document}
\begin{theorem}[Residue theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
[
\frac{1}{2\pi i} \int\limits_\gamma f\Bigl(x^{\mathbf{N}\in\mathbb{C}^{N\times 10}}\Bigr)
= \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k),.
]
\end{theorem}
\begin{theorem}[Maximum modulus]
Let $G$ be a bounded open set in $\BbbC$ and suppose that $f$ is a
continuous function on $G^-$ which is analytic in $G$. Then
[
\max{, |f(z)|:z\in G^- ,} = \max{, |f(z)|:z\in \partial G ,},.
]
\end{theorem}
First some large operators both in text:
$\iiint\limits_{Q}f(x,y,z) \diff x \diff y \diff z$
and
$\prod_{\gamma\in\Gamma_{\bar{C}}}\partial(\tilde{X}\gamma)$;
and also on display
[
\iiiint\limits{Q}f(w,x,y,z) \diff w \diff x \diff y \diff z
\leq
\oint_{\partial Q} f'\Biggl(\max\Biggl{
\frac{\Vert w\Vert}{\vert w^2+x^2\vert};
\frac{\Vert z\Vert}{\vert y^2+z^2\vert};
\frac{\Vert w\oplus z\Vert}{\vert x\oplus y\vert}
\Biggr}\Biggr),.
]
\end{document}
- 4,171
