\documentclass[12pt,a4paper]{article}
\usepackage{amsmath}\usepackage{amssymb}
\textwidth=16.5cm \oddsidemargin=-0.10cm \evensidemargin=-0.10cm \topmargin=-1.0cm \textheight=24.5cm
\newcommand{\piRsquare}{\pi r^2}
\title{The small amplitude expansion: The class of theoritical considered}
\author{xxx }
\date{January 26, 2013}
\begin{document} \baselineskip=18pt
\section{Introduction}
\section{Reconstruction of the article equation(15) }
Given, $$\phi_1= p_1cos(\tau+\alpha)$$
$$\nabla\phi_1= -p_1sin(\tau+\alpha) \nabla \alpha+\nabla p_1cos(\tau+\alpha)$$
$$\Delta\phi_1= -p_1 \nabla \alpha \cos(\tau+\alpha) \nabla \alpha-p_1 sin(\tau+\alpha) \Delta\alpha -\nabla \alpha \sin(\tau+\alpha)\nabla p_1-\nabla p_1 \nabla \alpha sin(\tau+ \alpha)+\Delta p_1cos(\tau+\alpha)$$
$$\Delta\phi_1= \cos(\tau+\alpha) [-p_1 \Delta \alpha + \Delta p_1]- sin(\tau+\alpha) [p_1\Delta \alpha+2\nabla \alpha \nabla p_1]$$
Differentiating $\phi_1$,
$$\phi_1= p_1cos(\tau+\alpha)$$
$$\dot\phi_1= -p_1 sin(\tau+\alpha)$$
$$\ddot\phi_1= -p_1cos(\tau+\alpha)$$
Again,
$$\phi_2 = p_2\cos(\tau + \alpha) + q_2\sin(\tau + \alpha) + \frac{g_2}{6}p_1^2[\cos(2\tau + 2\alpha) - 3] $$
$\omega_1=0$ for the bounding conditions.
$$\dot\phi_2 = -p_2\sin(\tau + \alpha) + q_2\cos(\tau + \alpha) + \frac{g_2}{6}p_1^2[-2 \sin(2\tau + 2\alpha) ] $$
$$\ddot\phi_2 = -p_2\cos(\tau + \alpha)- q_2\sin(\tau + \alpha) - \frac{4g_2}{6}p_1^2[\cos(2\tau + 2\alpha) ] $$
Putting these values in equation,
\begin{align*}
&\ddot\phi_3+\phi_3+2g_2\phi_1\phi_2+g_3\phi_1^3-\ddot\phi_1-\Delta\phi_1
+\omega_1\ddot\phi_2+\omega_2\ddot\phi_1 =0
\\[\bigskipamount]
&\begin{aligned}
&\ddot\phi_3+\phi_3+2g_2p_1 \cos(\tau+\alpha)
[p_2\cos(\tau + \alpha) + q_2\sin(\tau + \alpha) +
\frac{g_2}{6}p_1^2[\cos(2\tau + 2\alpha) - 3]] \\
&\quad{}+g_3p^3_1\cos^3(\tau+\alpha)
+p_1\cos(\tau+\alpha)-\cos(\tau+\alpha) [-p_1 \Delta \alpha+\Delta p_1] \\
&\quad {}-\sin(\tau+\alpha) [p_1\Delta \alpha+2\nabla \alpha \nabla p_1]
+\omega_2p_1\cos(\tau+\alpha)=0 \\
\end{aligned}
\\[\bigskipamount]
&\begin{aligned}
&\ddot\phi_3+\phi_3+g_2p_1 p_2 [1+\cos2(\tau+\alpha)]
+ g_2p_1 q_2\sin2(\tau+\alpha) \\
&\quad{} + \frac{2 g_2^2 p_1^3}{6} \cos(\tau +\alpha)[2\cos^2(\tau+\alpha)-4] \\
&\quad{} + g_3p_1^3[\frac{1}{4}(3\cos(\tau +\alpha)+\cos3(\tau+\alpha))]
+ p_1\cos(\tau+\alpha) \\
&\quad{} -\cos(\tau+\alpha)[\Delta p_1-p_1 \Delta\alpha]
+\sin(\tau+\alpha)[p_1\Delta \alpha+2 \nabla p_1 \nabla \alpha]
\omega_2p_1\cos(\tau+\alpha) =0
\end{aligned}
\\[\bigskipamount]
&\begin{aligned}
& \ddot\phi_3+\phi_3+g_2p_1 p_2 + g_2p_1 p_2 cos2(\tau+\alpha)] + g_2p_1 q_2sin2(\tau+\alpha) \\
&\quad{} + \frac{2 g_2^2 p_1^3}{3} cos^3(\tau +\alpha)-\frac{8 g_2^2 p_1^3}{6} cos(\tau +\alpha)+g_3p_1^3[\frac{1}{4}(3cos(\tau +\alpha)+cos3(\tau+\alpha))] \\
&\quad{} +p_1cos(\tau+\alpha)-cos(\tau+\alpha)[\Delta p_1-p_1 \Delta \alpha]+sin(\tau+\alpha)[p_1\Delta \alpha+2 \nabla p_1 \nabla \alpha]+\omega_2p_1cos(\tau+\alpha)=0
\end{aligned}
\\[\bigskipamount]
&\begin{aligned}
& \ddot\phi_3+\phi_3+g_2p_1 p_2 + g_2p_1 p_2 cos2(\tau+\alpha)] + g_2p_1 q_2sin2(\tau+\alpha) \\
&\quad{} + \frac{2 g_2^2 p_1^3}{3}[\frac{1}{4}(3cos(\tau +\alpha)+cos3(\tau+\alpha))] -\frac{8 g_2^2 p_1^3}{6} cos(\tau +\alpha)+g_3p_1^3[\frac{1}{4}(3cos(\tau +\alpha)+cos3(\tau+\alpha))] \\
&\quad{} +p_1cos(\tau+\alpha)-cos(\tau+\alpha)[\Delta p_1-p_1 \Delta\ alpha]+sin(\tau+\alpha)[p_1\Delta \alpha+2 \nabla p_1 \nabla \alpha]+\omega_2p_1cos(\tau+\alpha)=0 \\
\end{aligned}
\\[\bigskipamount]
&\begin{aligned}
& \ddot\phi_3+\phi_3+sin(\tau+\alpha)[p_1\Delta \alpha+2 \nabla p_1 \nabla \alpha] -cox(\tau+ \alpha)[\nabla p_1\\
&\quad{} -p_1\nabla \alpha+\frac{5}{6}g_2^2p_1^3- \frac{3}{4}g_3p_1^3-p_1 +\omega_2 p_1] \\
&\quad{} +\frac{ p_1^3}{12}(2g_2^2+3g_3)cos3(\tau + \alpha)+g_2 p_1 [p_2+ p_2 cos2(\tau +\alpha)+q_2 sin2(\tau+\alpha)] =0\\
\end{aligned}
\\[\bigskipamount]
&\begin{aligned}
& \ddot\phi_3+\phi_3+sin(\tau+\alpha)[p_1\Delta \alpha+2 \nabla p_1 \nabla \alpha] -cox(\tau+ \alpha)[\Delta p_1-p_1\nabla \alpha \\
&\quad{} + \lambda p_1^3-p_1+\omega_2 p_1] +\frac{p_1^3}{12}(2g_2^2+3g_3)cos3(\tau + \alpha) \\
&\quad{} +g_2 p_1 [p_2+ p_2 cos2(\tau +\alpha)+q_2 sin2(\tau+\alpha)]=0
\end{aligned}
\end{align*}
\end{document}
Asked
Active
Viewed 187 times
0
David Carlisle
- 757,742
Complex Guy
- 1,711
1 Answers
3
You need to add \right. and \left. when you want to have a parenthesis that spans several lines:
\begin{align*}
&\begin{aligned}
&-Acosx- Bsinx -9Ccos3x-9Dsin3x-4Ecos2x-4Fsin2x+Acosx+ Bsinx +Ccos3x+Dsin3x\\
&\quad{}+Ecos2x+Fsin2x+G+(p_1\Delta\alpha+2\nabla\alpha\nabla p_1)\sin(\tau+\alpha)-\left[\Delta p_1+\omega_2p_1+\lambda p_1^3+\right.\\
&\left.\quad{}-p_1(\nabla\alpha)^2\right]\cos(\tau+\alpha)+\frac{1}{12}p_1^3(2g_2^2+3g_3)\cos(3\tau+3\alpha)+g_2p_1\left[q_2\sin(2\tau+2\alpha)+p_2\cos(2\tau+2\alpha)+p_2\right] =0
\end{aligned}
\end{align*}
David Carlisle
- 757,742
myrtille
- 1,035
-
This doesn't necessarily lead to equal sized parenthesis, as the scaling only takes into account the symbols on the current line. May be better to use
\biggland\biggr(or one of the similar commands) instead of\leftand\right. – Torbjørn T. Feb 05 '13 at 14:05 -
To be honest I didn't look at the output after "fixing" the compilation error. Now that I have, I have to say the size of his parenthesis is probably the least of his problems, the equation is not just reaching into the margins, it's actually going on well beyond the end of the page for quite a number of equations. Lot of work to be done there. – myrtille Feb 05 '13 at 14:27
$$ ...$$(http://tex.stackexchange.com/q/503). For several consecutive equations, usegatheroralign. – Torbjørn T. Feb 05 '13 at 13:28\\between\left[and\right]. That is atleast one problem I saw. – rtzll Feb 05 '13 at 13:34\left/\rightin the code, mentioned in the comments or the answer. – Andrew Swann Feb 05 '13 at 19:43\left[ ... \right]. Why the OP removed them, I do not know. – Torbjørn T. Feb 05 '13 at 20:15