$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\lim_{n\ \to\ \infty}\sum_{k\ =\ 1}^{n}{n + k \over n^{2} + k}
={3 \over 2}:\ {\large ?}}$.
\begin{align}&\color{#66f}{\large%
\lim_{n\ \to\ \infty}\sum_{k\ =\ 1}^{n}{n+k \over n^{2} + k}}
=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\sum_{k\ =\ 1}^{n}{1 \over k + n^{2}}}
\\[5mm]&=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\sum_{k\ =\ 1}^{n}\int_{0}^{1}t^{k - 1 + n^{2}}\,\dd t}
\\[5mm]&=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\int_{0}^{1}t^{n^{2}}\sum_{k\ =\ 1}^{n}t^{k - 1}\,\dd t}
\\[5mm]&=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\int_{0}^{1}t^{n^{2}}\,{1 - t^{n} \over 1 - t}\,\dd t}
\\[5mm]&=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\pars{%
\int_{0}^{1}{1 - t^{n^{2} + n} \over 1 - t}\,\dd t
-\int_{0}^{1}{1 - t^{n^{2}} \over 1 - t}\,\dd t}}
\\[5mm]&=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\pars{H_{n^{2} + n} - H_{n^{2}}}}
\end{align}
where $\ds{H_{m}}$ is a Harmonic Number.
However, when $\ds{n \ggg 1}$:
$$
H_{n^{2} + n} - H_{n^{2}}\sim\ln\pars{1 + {n \over n^{2} + 1}}
\sim {n \over n^{2} + 1} - {n^{2} \over 2\pars{n^{2} + 1}^{2}}
={2n^{3} - n^{2} + 2n \over 2\pars{n^{2} + 1}^{2}}
$$
Then,
\begin{align}
&\color{#66f}{\large%
\lim_{n\ \to\ \infty}\sum_{k\ =\ 1}^{n}{n+k \over n^{2} + k}}
=\lim_{n\ \to\ \infty}\bracks{%
n + \pars{n - n^{2}}\,{2n^{3} - n^{2} + 2n \over 2\pars{n^{2} + 1}^{2}}}
\\[5mm]&=\lim_{n\ \to\ \infty}\bracks{%
{\dsc{3}n^{4} + n^{3} +2n^{2} + 2n \over \dsc{2}\pars{n^{2} + 1}^{2}}}
=\color{#66f}{\large{3 \over 2}}
\end{align}