I want to find
$$\lim_{n \rightarrow \infty} \left(\frac{n + 1}{n^2 + 1} + \frac{n + 2}{n^2 + 2} + \cdots + \frac{n + n}{n^2 + n} \right)$$
Here is my solution.
$$\lim_{n \rightarrow \infty} \left(\frac{n + 1}{n^2 + 1} + \frac{n + 2}{n^2 + 2} + \cdots + \frac{n + n}{n^2 + n} \right) = \lim_{n \rightarrow \infty} \left(\frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \cdots + \frac{n}{n^2 + n} \right) + \left(\frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \cdots + \frac{n}{n^2 + n} \right)$$
Lets call the first sum $S^1_n$ and the second sum $S^2_n$. Then we have:
$$1 \leftarrow n \frac{n}{n^2 + n} \leq S^1_n \leq n \frac{n}{n^2 + 1} \rightarrow 1$$
And by the sandwich criterium $S^1_n \rightarrow 1$.
On the other hand we have:
$$ \frac{1}{2} \leftarrow \frac{\frac{n (n + 1)}{2}}{n^2 + n} = \frac{1 + \cdots + n}{n^2 + n} \leq S^2_n \leq \frac{1 + \cdots + n}{n^2 + 1} = \frac{\frac{n (n + 1)}{2}}{n^2 + 1} \rightarrow \frac{1}{2}$$
So by the sandwich criterium $S^2_n \rightarrow \frac{1}{2}$.
So the limit is $\frac{3}{2}$.
Is this correct? Are there any other alternatives?