7

The integral \begin{equation} I=\int_1^{\infty}[u^\alpha-(u-1)^{\alpha}]^2du,\quad -1/2<\alpha<1/2 \end{equation} comes from the stochastic process fractional Brownian motion.

Can someone show how to evaluate it?

Thank you!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Reply to Lucian:

Do you mean the following derivation?

By letting $t=1/u$, the integral becomes

\begin{equation} \begin{split} I&=\int_0^1\left[t^{-2\alpha-2}-2t^{-2\alpha-2}(1-t)^\alpha + t^{-2\alpha-2}(1-t)^{2\alpha} \right]dt\\ &=\int_0^1t^{-2\alpha-2}dt+\int_0^1-2t^{-2\alpha-2}(1-t)^\alpha dt + \int_0^1t^{-2\alpha-2}(1-t)^{2\alpha}dt \\ &=I_1+I_2+I_3 \end{split} \end{equation}

\begin{equation} \begin{split} I_1&=\left.\frac{t^{-2\alpha-1}}{-2\alpha-1}\right|_0^1=\infty\\ I_2&=-2B(-2\alpha-1,\alpha+1)=-2\frac{\Gamma(-2\alpha-1)\Gamma(\alpha+1)}{\Gamma(-\alpha)}\\ I_3&=B(-2\alpha-1,2\alpha+1)=\frac{\Gamma(-2\alpha-1)\Gamma(2\alpha+1)}{\Gamma(0)}=0\\ \end{split} \end{equation}

The above derivations are not correct since beta function $B(w,v)$ requires $w,v>0$ and $I_1$ is divergent. What may be the problem?

Thank you

ecook
  • 399
  • Actually, your third term is undefined, since it is of the form $\infty-\infty$. The first and last term of the integrand cannot be separated like this, due to issues of convergence. They'll have both to remain inside the same integral sign. You will have to compute a limit, whose value is $-\dfrac1{2a+1}$. This, together with $I_2$, will yield the final result. – Lucian Dec 27 '14 at 12:06
  • Actually, all those three integrals diverge simultaneously. So the cancellation effect occurs to yield a finite value only when we consider all those terms inside the integral. – Sangchul Lee Dec 27 '14 at 12:12
  • @Lucian Could you detail the derivation since I can't figure out myself – ecook Dec 27 '14 at 12:25
  • @sos440: No. $I_2$ definitely converges. – Lucian Dec 27 '14 at 13:19
  • @Lucian, $-2\alpha-2 < -1$ shows that $t^{-2\alpha-2}(1-t)^{\alpha} \sim t^{-2\alpha-2}$ near $t = 0$, which makes $I_{2}$ diverge. – Sangchul Lee Dec 27 '14 at 13:21
  • @ecook: Use the answer to this question as inspiration. – Lucian Dec 27 '14 at 13:22
  • @sos440: What you wrote is $-\dfrac{I_2}2-I_1$, which indeed diverges. – Lucian Dec 27 '14 at 13:24
  • @Lucian, Why is the integral $\int_{0}^{1} t^{-2a-2}(1-t)^{a} , dt$ equal to $-\frac{1}{2}I_{2} - I_{1}$, instead of just $-\frac{1}{2}I_{2}$? – Sangchul Lee Dec 27 '14 at 13:41
  • @sos440: Never mind. I thought you wrote a minus in place of a tilde. – Lucian Dec 27 '14 at 13:51

3 Answers3

6

EDITED. The major obstacle when calculating the integral

$$ I = \int_{1}^{\infty} (u^{\alpha} - (u-1)^{\alpha})^{2} \, du = \int_{0}^{1} x^{-2\alpha-2}(1 - (1-x)^{\alpha})^{2} \, dx $$

is that, within the range $|\alpha| < \frac{1}{2}$, the term $x^{-2\alpha-2}$ has singularity at $x = 0$ which gives rise to infinity when it is not cancelled out appropriately. In order words, splitting the integral into three parts gives

\begin{align*} I_{1} &= \int_{0}^{1} x^{-2\alpha-2} \, dx = \infty, \\ I_{2} &= -2 \int_{0}^{1} x^{-2\alpha-2}(1 - x)^{\alpha} \, dx = -\infty, \\ I_{2} &= \int_{0}^{1} x^{-2\alpha-2}(1 - x)^{2\alpha} \, dx = \infty. \end{align*}

One way of avoiding this catastrophe is to use the principle of analytic continuation. To utilize this technique, let us introduce auxiliary integral

$$ I(s) = \int_{1}^{\infty} u^{-s}(u^{\alpha} - (u-1)^{\alpha})^{2} \, du = \int_{0}^{1} x^{s-2\alpha-2}(1 - (1-x)^{\alpha})^{2} \, dx. $$

For any given $|\alpha| < \frac{1}{2}$, it is not hard to check that $I(s)$ converges and defines an analytic function for $\Re(s) > -2\alpha-1$. Indeed, from the mean value theorem we find that $u^{\alpha} - (u-1)^{\alpha} = \Theta(u^{\alpha-1})$ as $u \to \infty$. Consequently, the integrand is asymptotically $$ u^{-s}(u^{\alpha} - (u-1)^{\alpha})^{2} = \Theta(u^{-\Re(s)+2\alpha-2}) $$ and hence it becomes integrable.

Moreover, for $\Re(s) > 1+2\alpha$, we have $\Re(s-2\alpha-2) > -1$ and hence we become able to evaluate $I(s)$ by expanding the square and integrating each resulting term as follows:

\begin{align*} I(s) &= \int_{0}^{1} x^{s-2\alpha-2} \, dx - 2 \int_{0}^{1} x^{s-2\alpha-2}(1 - x)^{\alpha} \, dx + \int_{0}^{1} x^{s-2\alpha-2}(1 - x)^{2\alpha} \, dx \\ &= \beta(s-2\alpha-1, 1) - 2\beta(s-2\alpha-1, 1+\alpha) + \beta(s-2\alpha-1, 1+2\alpha) \\ &= \Gamma(s-2\alpha-1) \left( \frac{1}{\Gamma(s-2\alpha)} - 2\frac{\Gamma(1+\alpha)}{\Gamma(s-\alpha)} + \frac{\Gamma(1+2\alpha)}{\Gamma(s)} \right). \tag{1} \end{align*}

Now notice that the right-hand side defines a meromorphic function on all of $\Bbb{C}$. So by the principle of analytic continuation, (1) holds for all $\Re(s) > -2\alpha-1$ away from poles of $\Gamma(s-2\alpha-1)$. Now taking limit as as $s \to 0$, we obtain

\begin{align*} I &= \Gamma(-2\alpha-1) \left( \frac{1}{\Gamma(-2\alpha)} - 2\frac{\Gamma(1+\alpha)}{\Gamma(-\alpha)} \right) \\ &= -\frac{1}{2\alpha+1} - 2\beta(-2\alpha-1, 1+\alpha), \end{align*}

This coincides with Lucian's answer, and also coincides with numerical tests with Mathematica.


OLD ANSWER. It seems that the exact closed form for the integral seems hard to obtain. Instead, some approximations are possible. For example, I obtained

$$ \frac{2\alpha^{2}}{1-4\alpha^{2}} \leq I \leq \frac{2\alpha^{2}}{(1-4\alpha^{2})(\alpha + \frac{1}{2})}. $$

In particular, we have $I = \Theta(\alpha^{2})$ near $\alpha =0$ and $I ~ \sim (4-8\alpha)^{-1}$ as $\alpha \to \frac{1}{2}^{-}$.

Sangchul Lee
  • 167,468
3

Real Variable Approach $$ \begin{align} &\int_1^\infty(u^\alpha-(u-1)^\alpha)^2\,\mathrm{d}u\\ &=\lim_{\lambda\to\infty}\int_0^{\lambda-1}((u+1)^\alpha-u^\alpha)^2\,\mathrm{d}u\tag{1a}\\ &=\lim_{\lambda\to\infty}\left[\int_0^{\lambda-1}(u+1)^{2\alpha}\,\mathrm{d}u-2\int_0^{\lambda-1}(u+1)^\alpha u^\alpha\,\mathrm{d}u+\int_0^{\lambda-1}u^{2\alpha}\,\mathrm{d}u\right]\tag{1b}\\ &=\lim_{\lambda\to\infty}\small\left[\frac{\lambda^{2\alpha+1}-1}{2\alpha+1}+\frac{(\lambda-1)^{2\alpha+1}}{2\alpha+1}-2\int_0^{\lambda-1}(u+1)^\alpha u^\alpha\,\mathrm{d}u\right]\tag{1c}\\ &=\lim_{\lambda\to\infty}\small\left[\frac{\lambda^{2\alpha+1}-1}{2\alpha+1}+\frac{(\lambda-1)^{2\alpha+1}}{2\alpha+1}-\frac{2(\lambda-1)^{\alpha+1}\lambda^\alpha}{2\alpha+1}-\frac{2\alpha}{2\alpha+1}\int_0^{\lambda-1}(u+1)^{\alpha-1}u^\alpha\,\mathrm{d}u\right]\tag{1d}\\ &=\lim_{\lambda\to\infty}\small\left[\frac{\lambda^{2\alpha+1}-1}{2\alpha+1}+\frac{(\lambda-1)^{2\alpha+1}}{2\alpha+1}-\frac{2(\lambda-1)^{\alpha+1}\lambda^\alpha}{2\alpha+1}-\frac{(\lambda-1)^{\alpha+1}\lambda^{\alpha-1}}{2\alpha+1}\right]\\ &-\lim_{\lambda\to\infty}\frac{\alpha-1}{2\alpha+1}\int_0^{\lambda-1}(u+1)^{\alpha-2} u^{\alpha}\,\mathrm{d}u\tag{1e}\\[6pt] &=\frac{1-\alpha}{2\alpha+1}\,\mathrm{B}(1+\alpha,1-2\alpha)-\frac1{2\alpha+1}\tag{1f}\\[6pt] &=-2\,\mathrm{B}(1+\alpha,-1-2\alpha)-\frac1{2\alpha+1}\tag{1g} \end{align} $$ Explanation:
$\text{(1a)}$: substitute $u\mapsto u+1$ and convert improper integral to a limit
$\text{(1b)}$: expand the square
$\text{(1c)}$: evaluate the left and right integrals of $\text{(1b)}$
$\text{(1d)}$: apply $(2)$ with $\beta=\alpha$
$\text{(1e)}$: apply $(2)$ with $\beta=\alpha-1$
$\text{(1f)}$: evaluate the limits using $(3)$
$\text{(1g)}$: use $\mathrm{B}(1+\alpha,1-2\alpha)=\frac{-2\alpha}{1-\alpha}\frac{-1-2\alpha}{-\alpha}\,\mathrm{B}(1+\alpha,-1-2\alpha)$


Integration by Parts to Reduce the Exponent of $\boldsymbol{(u+1)}$ $$ \begin{align} &\int_0^{\lambda-1}(u+1)^\beta u^\alpha\,\mathrm{d}u\\ &=\frac1{a+1}\int_0^{\lambda-1}(u+1)^\beta\,\mathrm{d}u^{\alpha+1}\tag{2a}\\ &=\frac{(\lambda-1)^{\alpha+1}\lambda^\beta}{\alpha+1}-\frac\beta{\alpha+1}\int_0^{\lambda-1}(u+1)^{\beta-1}u^{\alpha+1}\,\mathrm{d}u\tag{2b}\\ &=\frac{(\lambda-1)^{\alpha+1}\lambda^\beta}{\alpha+1}-\frac\beta{\alpha+1}\left[\int_0^{\lambda-1}(u+1)^\beta u^\alpha\,\mathrm{d}u-\int_0^{\lambda-1}(u+1)^{\beta-1}u^\alpha\,\mathrm{d}u\right]\tag{2c}\\ &=\frac{(\lambda-1)^{\alpha+1}\lambda^\beta}{\alpha+\beta+1}+\frac\beta{\alpha+\beta+1}\int_0^{\lambda-1}(u+1)^{\beta-1}u^\alpha\,\mathrm{d}u\tag{2d} \end{align} $$ Explanation:
$\text{(2a)}$: prepare to integrate by parts
$\text{(2b)}$: integrate by parts
$\text{(2c)}$: $u=(u+1)-1$
$\text{(2d)}$: add $\frac\beta{\alpha+1}\int_0^{\lambda-1}(u+1)^\beta u^\alpha\,\mathrm{d}u$ and multiply by $\frac{\alpha+1}{\alpha+\beta+1}$


Evaluation of a Limit From $\bf{(1e)}$ $$ \begin{align} &\hphantom{=}\lambda^{2\alpha+1}+(\lambda-1)^{2\alpha+1}-2(\lambda-1)^{\alpha+1}\lambda^\alpha-(\lambda-1)^{\alpha+1}\lambda^{\alpha-1}\\ &=\lambda^{2\alpha}+\color{#C00000}{\lambda^{2\alpha}(\lambda-1)+(\lambda-1)^{2\alpha+1}-2(\lambda-1)^{\alpha+1}\lambda^\alpha}-(\lambda-1)^{\alpha+1}\lambda^{\alpha-1}\tag{3a}\\ &=\color{#00A000}{\lambda^{2\alpha}}+\color{#C00000}{(\lambda-1)\left(\lambda^\alpha-(\lambda-1)^\alpha\right)^2}\color{#00A000}{-(\lambda-1)^{\alpha+1}\lambda^{\alpha-1}}\tag{3b}\\ &=(\lambda-1)\left(\lambda^\alpha-(\lambda-1)^\alpha\right)^2+\color{#00A000}{\left(\lambda^{\alpha+1}-(\lambda-1)^{\alpha+1}\right)\lambda^{\alpha-1}}\tag{3c}\\ &\sim\lambda\left(\alpha\lambda^{\alpha-1}\right)^2+\left((\alpha+1)\lambda^\alpha\right)\lambda^{\alpha-1}\tag{3d}\\ &=(\alpha^2+\alpha+1)\lambda^{2\alpha-1}\tag{3e}\\ &\to0\tag{3f} \end{align} $$ Explanation:
$\text{(3a)}$: $\lambda^{2\alpha+1}=\lambda^{2\alpha}(1+(\lambda-1))=\lambda^{2\alpha}+\lambda^{2\alpha}(\lambda-1)$
$\text{(3b)}$: collect red terms
$\text{(3c)}$: collect green terms
$\text{(3d)}$: mean value theorem
$\text{(3e)}$: collect terms
$\text{(3f)}$: $2\alpha-1\lt0$

robjohn
  • 345,667
0

Hint: Let $u=\dfrac1t$ , and then recognize the expression of the beta function in the new integral.

Lucian
  • 48,334
  • 2
  • 83
  • 154