$\newcommand{\+}{^{\dagger}}
\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\right\vert\,}
\newcommand{\ket}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x
=\half\,{-1/n \choose 1/n}^{-1}:\ {\large ?}.\qquad\qquad n > 2}$.
\begin{align}&\overbrace{\color{#c00000}{
\int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x}}
^{\ds{x^{n}\ \mapsto x}}\ =\
\int_{0}^{\infty}\bracks{\pars{1 + x}^{1/n} - x^{1/n}}\,{1 \over n}\,x^{1/n - 1}
\,\dd x
\\[3mm]&={1 \over n}\ \overbrace{\int_{0}^{\infty}\bracks{
\pars{1 + x}^{1/n}x^{1/n - 1} - x^{2/n - 1}}\,\dd x}
^{\ds{t\ \equiv {1 \over 1 + x}\ \imp\ x = {1 \over t} - 1}}
\\[3mm]&={1 \over n}\int_{1}^{0}\bracks{
t^{-1/n}\pars{{1 \over t} - 1}^{1/n - 1}
-\pars{{1 \over t} - 1}^{2/n - 1}}\,\pars{-\,{\dd t \over t^{2}}}
\\[3mm]&={1 \over n}\int_{0}^{1}\bracks{
t^{-2/n - 1}\pars{1 - t}^{1/n - 1} - t^{-2/n - 1}\pars{1 - t}^{2/n - 1}}\,\dd t
\end{align}
\begin{align}&\color{#c00000}{
\int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x}
={1 \over n}\int_{0}^{1}{t^{1/n - 1} - 1 \over \pars{1 - t}^{2/n + 1}}\,\dd t-
{1 \over n}\int_{0}^{1}{t^{2/n - 1} - 1 \over \pars{1 - t}^{2/n + 1}}\,\dd t
\end{align}
Both integrals converge when $\ds{\Re\pars{n} > 2}$. Moreover,
$$
\int_{0}^{1}{t^{a} - 1 \over \pars{1 - t}^{2/n + 1}}\,\dd t
=\half\,n + {a!\pars{-2/n - 1}! \over \pars{a - 2/n}!}
$$
such that
\begin{align}&\left.\color{#66f}{\large
\int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x}\,\right\vert_{\ n\ >\ 2}
={1 \over n}\,{\pars{1/n - 1}!\pars{-2/n - 1}! \over \pars{-1/n - 1}!}
\\[3mm]&={1 \over n}\,
{\bracks{n\pars{1/n}!}\bracks{\pars{-n/2}\pars{-2/n}!} \over -n\pars{-1/n}!}
=\half\bracks{\pars{-1/n}! \over \pars{1/n}!\pars{-2/n}!}^{-1}
=\color{#66f}{\large\half\,{-1/n \choose 1/n}^{-1}}
\end{align}