21

How can we prove, without employing the aid of residues or various transforms, that, for $n>2$ $$\int_0^\infty\Big(\sqrt[n]{1+x^n}-x\Big)dx~=~\frac12\cdot{-1/n\choose+1/n}^{-1}$$


Motivation: In my previous question, thanks to Will Jagy's simple but brilliant answer, I was able to express the area of the superellipse $x^n+y^n=r^n$, for odd values of $n=2k+1$, with $k\in\mathbb N^*$, as

$A_n=r^2\displaystyle\cdot{2/n\choose1/n}^{-1}+r^2\cdot{-1/n\choose+1/n}^{-1}$, where the first term, representing the surface inside the

first sector or quadrant, comes from a simple evaluation of the beta function.


My fruitless efforts and endeavors:

$\big(1\big).$ Breaking up the integration interval into $(0,1)$ and $(1,\infty)$, expanding the integrand into an appropriate binomial series for each of the two cases, and then switching the order of summation and integration. In the end, this made me rewrite the initial question in terms of an infinite series, but led me no closer to finding an answer:

$$2a\sum_{k=1}^\infty{a\choose k}\Bigg(\frac1{k+a}+\frac1{k-2a}\Bigg)={-a\choose+a}^{-1}-1.$$
$\big(2\big).$ Letting $x=\sqrt[n]{\sinh^2t~}$. Needless to say, that did not get me very far either.

$\big(3\big).$ Letting $x^n=u$, we are able to obtain an expression in terms of incomplete beta functions.

Lucian
  • 48,334
  • 2
  • 83
  • 154
  • 2
    One possible generalization would be to prove that $$\int_0^\infty\Big(\sqrt[m]{1+x^n}-\sqrt[m]{x^n}\Big)dx=\frac n{n+m}\cdot{-1/m\choose+1/n}^{-1}$$ – Lucian Jun 24 '14 at 04:34
  • 1
    "without employing the aid of residues or various transforms"... So, what can we use ?. – Felix Marin Jun 25 '14 at 07:43
  • Honestly, I'll upvote any correct approach, but I would particularly appreciate one that does not employ the above mentioned tools $($since I cannot understand the logic behind them, though I used them myself quite a lot in college$)$. Feel free to use anything else $($series, special functions, derivation under the integral sign, etc$)$. – Lucian Jun 25 '14 at 09:02
  • According to Boros and Moll's Irresistible Integrals $(2004)$, this result was already known to Spiegel and Rosenbaum in $1955$. – Lucian Jun 28 '14 at 16:38
  • What is "derivation under the integral sign"? What are you deriving? – JacksonFitzsimmons Aug 03 '15 at 07:16

1 Answers1

11

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x =\half\,{-1/n \choose 1/n}^{-1}:\ {\large ?}.\qquad\qquad n > 2}$.

\begin{align}&\overbrace{\color{#c00000}{ \int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x}} ^{\ds{x^{n}\ \mapsto x}}\ =\ \int_{0}^{\infty}\bracks{\pars{1 + x}^{1/n} - x^{1/n}}\,{1 \over n}\,x^{1/n - 1} \,\dd x \\[3mm]&={1 \over n}\ \overbrace{\int_{0}^{\infty}\bracks{ \pars{1 + x}^{1/n}x^{1/n - 1} - x^{2/n - 1}}\,\dd x} ^{\ds{t\ \equiv {1 \over 1 + x}\ \imp\ x = {1 \over t} - 1}} \\[3mm]&={1 \over n}\int_{1}^{0}\bracks{ t^{-1/n}\pars{{1 \over t} - 1}^{1/n - 1} -\pars{{1 \over t} - 1}^{2/n - 1}}\,\pars{-\,{\dd t \over t^{2}}} \\[3mm]&={1 \over n}\int_{0}^{1}\bracks{ t^{-2/n - 1}\pars{1 - t}^{1/n - 1} - t^{-2/n - 1}\pars{1 - t}^{2/n - 1}}\,\dd t \end{align}

\begin{align}&\color{#c00000}{ \int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x} ={1 \over n}\int_{0}^{1}{t^{1/n - 1} - 1 \over \pars{1 - t}^{2/n + 1}}\,\dd t- {1 \over n}\int_{0}^{1}{t^{2/n - 1} - 1 \over \pars{1 - t}^{2/n + 1}}\,\dd t \end{align} Both integrals converge when $\ds{\Re\pars{n} > 2}$. Moreover, $$ \int_{0}^{1}{t^{a} - 1 \over \pars{1 - t}^{2/n + 1}}\,\dd t =\half\,n + {a!\pars{-2/n - 1}! \over \pars{a - 2/n}!} $$

such that \begin{align}&\left.\color{#66f}{\large \int_{0}^{\infty}\pars{\root[n]{1 + x^{n}} - x}\,\dd x}\,\right\vert_{\ n\ >\ 2} ={1 \over n}\,{\pars{1/n - 1}!\pars{-2/n - 1}! \over \pars{-1/n - 1}!} \\[3mm]&={1 \over n}\, {\bracks{n\pars{1/n}!}\bracks{\pars{-n/2}\pars{-2/n}!} \over -n\pars{-1/n}!} =\half\bracks{\pars{-1/n}! \over \pars{1/n}!\pars{-2/n}!}^{-1} =\color{#66f}{\large\half\,{-1/n \choose 1/n}^{-1}} \end{align}

Lucian
  • 48,334
  • 2
  • 83
  • 154
Felix Marin
  • 89,464