Knowing that $\lim_{n\to\infty}x_n=x$ I want to prove that $$\lim_{n\to\infty}\frac{x_1+2^kx_2+\dots+n^kx_n}{n^{k+1}}=\frac{x}{k+1}.$$
My guess is that we will use the Stolz–Cesàro theorem.
So for $$a_n=x_1+2^kx_2+\dots+n^kx_n$$and $$A_n=n^{k+1}$$ I have:
$$\frac{a_{n+1}-a_n}{A_{n+1}-A_{n}}=$$ $$\frac{x_1+2^kx_2+\dots+(n+1)^kx_{n+1}-x_1-2^kx_2-\dots-^kx_n}{(n+1)^{k+1}-n^{k+1}}=$$ $$\frac{(n+1)^kx_{n+1}}{(n+1)^{k+1}-n^{k+1}}$$
From here on, I'm sure if I continue correctly:
$$\frac{x_{n+1}}{\frac{(n+1)^{k+1}-n^{k+1}}{(n+1)^k}}=$$ $$\frac{x_{n+1}}{\frac{(n+1)^{k+1}}{(n+1)^k}-\frac{n^{k+1}}{(n+1)^k}}=$$ $$\frac{x_{n+1}}{n+1-(\frac{n}{n+1})^kn}=$$ $$\frac{x_{n+1}}{n+1-(\frac{1}{\frac{n+1}{n}})^kn}$$
And that is what I got so far. I've got the numerator correct and the denominator seems close.
Any tips on how to expand the denominator?