This thread was only Q&A.
Given Hilbert spaces $\mathcal{H}$ and $\mathcal{K}$.
Consider an operator: $$J\in\mathcal{B}(\mathcal{H},\mathcal{K}):\quad P:=J^*J$$
By a previous thread:* $$\mathcal{R}:=\mathcal{N}^\perp:\quad\mathcal{N}:=\mathcal{N}P=\mathcal{N}J$$
Then one has: $$\|J\varphi\|=\|\varphi\|\quad(\varphi\in\mathcal{R})\iff P\varphi=\varphi\quad(\varphi\in\mathcal{R})$$
How can I prove this?
*See the thread: Kernel