This thread is Q&A.
Problem
Given Hilbert spaces $\mathcal{H}$ and $\mathcal{K}$.
Consider an operator: $$A:\mathcal{D}A\subseteq\mathcal{H}\to\mathcal{K}$$
Then for the kernel: $$\mathcal{N}A=\mathcal{N}(A^*A)$$
How can I prove this?
Reference
This is a lemma for: Polar Decomposition, Partial Isometries