Given a permutation matrix that is not full rank, is there an algebraic criterion to tell if matrix contains more than one disjoint non-trivial cycle or exactly one non-trivial cycle?
Example: Consider $$\begin{pmatrix} 0& 0& 0& 0& 1& 0& 0& 0\\ 1& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 1\\ 0& 1& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 1& 0& 0 \end{pmatrix}$$
This matrix embeds 1st row->2nd row->6th row->8th row->5th row->1st row cycle (essentially a 5-cycle in $8\times 8$ matrix).
When previous example acts on left on \begin{pmatrix} a1& a2& a3& a4& a5& a6& a7& a8\\ b1& b2& b3& b4& b5& b6& b7& b8\\ c1& c2& c3& c4& c5& c6& c7& c8\\ d1& d2& d3& d4& d5& d6& d7& d8\\ e1& e2& e3& e4& e5& e6& e7& e8\\ f1& f2& f3& f4& f5& f6& f7& f8\\ g1& g2& g3& g4& g5& g6& g7& g8\\ h1& h2& h3& h4& h5& h6& h7& h8 \end{pmatrix}
we get \begin{pmatrix} e1& e2& e3& e4& e5& e6& e7& e8\\ a1& a2& a3& a4& a5& a6& a7& a8\\ 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0\\ h1& h2& h3& h4& h5& h6& h7& h8\\ b1& b2& b3& b4& b5& b6& b7& b8\\ 0& 0& 0& 0& 0& 0& 0& 0\\ f1& f2& f3& f4& f5& f6& f7& f8 \end{pmatrix}
Acting on left $5$ times gives\begin{pmatrix} a1& a2& a3& a4& a5& a6& a7& a8\\ b1& b2& b3& b4& b5& b6& b7& b8\\ 0& 0& 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0& 0& 0\\ e1& e2& e3& e4& e5& e6& e7& e8\\ f1& f2& f3& f4& f5& f6& f7& f8\\ 0& 0& 0& 0& 0& 0& 0& 0\\ h1& h2& h3& h4& h5& h6& h7& h8 \end{pmatrix}