Show that $\displaystyle\sum^\infty_{n=1} \frac 1 {e^{\sqrt n}}$ converges.
My attempt:
Using limit ratio test: $\displaystyle\lim_{n\to\infty} \frac {e^{\sqrt n}} {e^{\sqrt {n+1}}}=\lim_{n\to\infty}\frac {e^{\frac n 2}} {e^{\frac {n+1} 2}}=\lim_{n\to\infty}\frac {e^{\frac n 2}} {e^{\frac n 2+\frac 1 2}}=\lim_{n\to\infty}\frac 1 {e^{\frac n 2+\frac 1 2-\frac n 2}}=e^{-0.5}$
And since $e^{-0.5}<1$ the series converges.
Is that alright?