Let $U_1,U_2,...U_n,$ be iid samples from uniform distribution $U(0,1)$. And the order Statistic:
\begin{equation}
U_{n,1}\leq U_{n,2}\leq ...\leq U_{n,n},
\end{equation}
Given $p\in(0,1)$, if $1\leq K_n\leq n$ and $\frac{K_n}{n}\rightarrow p$. Proof $U_{n,k_n}\rightarrow p$ a.s.
My ideas so far:
The density function of $U_{n,k_n}$ is \begin{equation} f_n(x)=\frac{n!}{(k_n-1)!(n-k_n)!}x^{k_n-1}(1-x)^{n-k_n}. \end{equation} Then I would like to proof: \begin{equation} \sum_n P(|U_{n,k_n}-p|>\epsilon)<\infty \end{equation} Then by Borel-Cantelli lemma: \begin{equation} P(|U_{n,k_n}-p|>\epsilon \quad\text{i.o.})=0 \end{equation} which means: \begin{equation} U_{n,k_n}\rightarrow p = 0. \quad a.s. \end{equation} However, the integral of $P(|U_{n,k_n}-p|>\epsilon)<\infty$ is hard to calculate. Do I miss something? Does there exist some easy way to proof this?
Thanks in advance for any help!