First, change the limit into this form,
$$\lim\limits_{x\to 0}\frac{(1+x)^{1/x}-e}{x}.$$
and apply L`Hôpital rule to get,
$$\lim\limits_{x\to 0} \;(x+1)^{1/x} \frac{\left(\frac{x}{x+1}-\log (x+1)\right)}{x^2}.$$
Since $\lim\limits_{x\to 0} \;(x+1)^{1/x} =e$ , you may want to know if $\lim\limits_{x\to 0}\frac{\left(\frac{x}{x+1}-\log (x+1)\right)}{x^2}$ exist. Apply L`Hôpital rule again,
$$\lim\limits_{x\to 0}\frac{\left(\frac{x}{x+1}-\log (x+1)\right)}{x^2} = \lim\limits_{x\to 0} \frac{-1}{2 (x+1)^2} = -\frac{1}{2}$$
It exist and we are done,
$$\lim\limits_{x\to 0}\frac{(1+x)^{1/x}-e}{x}=\lim\limits_{x\to 0} \;(x+1)^{1/x} \lim\limits_{x\to 0}\frac{\left(\frac{x}{x+1}-\log (x+1)\right)}{x^2} = -\frac{e}{2}.$$