Solve $$ u_t + u u_x = 0 $$ with initial data $$ u(x,0) = g(x) = \left\lbrace \begin{aligned} &0 &&\text{for}\; x < -1\\ &1-|x| &&\text{for}\; {-1}\leqslant x \leqslant 1 \\ &0 &&\text{for}\; x > 1\, . \end{aligned} \right. $$ In what region is the solution single-valued? Confirm this observation by sketching or plotting the base characteristics.
$$\frac{dt}{d\tau }=1$$ $$t=\tau $$ $$t(\tau=0)=0$$
$$\frac{dx}{d\tau}=u$$ $$x=g(\xi)\tau+\xi$$ $$x(\tau=0)=\xi$$ $$\frac{du}{d\tau}=0$$ $$u=g{\xi}$$ $$u(\tau=0)=g(\xi)$$
How should I take my "solutions" further? Any help is appreciated
