Suppose we seek to evaluate
$$S_m(n) = \sum_{p=0}^n {n\choose p} (-1)^p \frac{1}{m+p+1}$$
where $m$ is an integer not equal to $-1,-2,\ldots, -n-1$ where the
fraction is undefined.
Observe that with $$f(z) = \frac{(-1)^n n!}{z+m+1}
\prod_{q=0}^n \frac{1}{z-q}$$
this is
$$S_m(n) = \sum_{p=0}^n \mathrm{Res}_{z=p} f(z).$$
the reason being that
$$\mathrm{Res}_{z=p} f(z)
= \frac{(-1)^n n!}{m+p+1}
\prod_{q=0}^{p-1} \frac{1}{p-q} \prod_{q=p+1}^n \frac{1}{p-q}
\\ = \frac{(-1)^n n!}{m+p+1} \frac{1}{p!} \frac{(-1)^{n-p}}{(n-p)!}
= (-1)^p \frac{1}{m+p+1} {n\choose p}.$$
With $f(z)$ being rational the residues at all poles sum to zero and we thus have
$$S_m(n) =
-(\mathrm{Res}_{z=-m-1} f(z) +\mathrm{Res}_{z=\infty} f(z)).$$
We get for the residue at infinity
$$-\mathrm{Res}_{z=0} \frac{1}{z^2}
\frac{(-1)^n n!}{1/z+m+1}
\prod_{q=0}^n \frac{1}{1/z-q}
= -\mathrm{Res}_{z=0} \frac{z^{n+2}}{z^2}
\frac{(-1)^n n!}{1+z(m+1)}
\prod_{q=0}^n \frac{1}{1-qz}
\\ = -\mathrm{Res}_{z=0} z^n
\frac{(-1)^n n!}{1+z(m+1)}
\prod_{q=0}^n \frac{1}{1-qz} = 0.$$
On the other hand the negative of the residue at $z=-m-1$ is
$$- (-1)^n n! \prod_{q=0}^n \frac{1}{-m-1-q}
= n! \prod_{q=0}^n \frac{1}{q+m+1}
= \frac{n! m!}{(n+m+1)!}.$$
This concludes the argument.