Notice that
\begin{align}
S
& = \sum_{n = 0}^{\infty} \frac{n^{2}}{n!} \\
& = \frac{0^{2}}{0!} + \frac{1^{2}}{1!} + \frac{2^{2}}{2!} + \frac{3^{2}}{3!} +
\cdots \\
& = \frac{1}{0!} + \frac{2}{1!} + \frac{3}{2!} + \frac{4}{3!} + \cdots.
\end{align}
Then
\begin{align}
S - e
& = \left(
\frac{1}{0!} + \frac{2}{1!} + \frac{3}{2!} + \frac{4}{3!} + \cdots
\right) -
\left(
\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots
\right) \\
& = \frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \cdots \\
& = e. \qquad (\text{As shown in the OP.}) \\
\end{align}
Therefore, $ S = e + e = 2 e $.
In fact, using the same type of reasoning, it can be shown that $ \displaystyle \sum_{n = 0}^{\infty} \frac{n^{3}}{n!} = 5 e $.
Here is the connection with Bell numbers.
For each $ p \in \mathbb{N}_{0} $, let $ \displaystyle S_{p} \stackrel{\text{df}}{=} \sum_{n = 0}^{\infty} \frac{n^{p}}{n!} $. Notice that
\begin{align}
\forall p \in \mathbb{N}: \quad
S_{p}
& = \sum_{n = 0}^{\infty} \frac{n^{p}}{n!} \\
& = \sum_{n = 1}^{\infty} \frac{n^{p}}{n!} \qquad
\left( \text{As $ \dfrac{0^{p}}{0!} = 0 $.} \right) \\
& = \sum_{n = 1}^{\infty} \frac{n^{p - 1}}{(n - 1)!} \qquad
(\text{After canceling $ n $’s.}) \\
& = \sum_{n = 0}^{\infty} \frac{(n + 1)^{p - 1}}{n!}. \qquad
(\text{After re-indexing.})
\end{align}
Hence,
\begin{align}
\forall p \in \mathbb{N}_{\geq 2}: \quad
S_{p} - S_{p - 1}
& = \sum_{n = 0}^{\infty} \frac{(n + 1)^{p - 1}}{n!} -
\sum_{n = 0}^{\infty} \frac{n^{p - 1}}{n!} \\
& = \sum_{n = 0}^{\infty}
\frac{1}{n!} \left[ (n + 1)^{p - 1} - n^{p - 1} \right] \\
& = \sum_{n = 0}^{\infty}
\left[ \frac{1}{n!} \sum_{k = 0}^{p - 2} \binom{p - 1}{k} n^{k} \right]
\qquad (\text{By the Binomial Theorem.}) \\
& = \sum_{n = 0}^{\infty} \sum_{k = 0}^{p - 2}
\binom{p - 1}{k} \frac{n^{k}}{n!} \\
& = \sum_{k = 0}^{p - 2}
\left[ \binom{p - 1}{k} \sum_{n = 0}^{\infty} \frac{n^{k}}{n!} \right] \\
& = \sum_{k = 0}^{p - 2} \binom{p - 1}{k} S_{k}.
\end{align}
Therefore,
$$
\forall p \in \mathbb{N}_{\geq 2}: \quad
S_{p}
= \sum_{k = 0}^{p - 2} \binom{p - 1}{k} S_{k} + S_{p - 1}
= \sum_{k = 0}^{p - 1} \binom{p - 1}{k} S_{k}.
$$
As $ S_{0} = S_{1} = e $ by inspection, we see that the $ S_{p} $’s are the Bell numbers multiplied by $ e $.