9

Calculating the sum of $\sum\frac{n^2-2}{n!}$

I want to calculate the sum of $\sum_{n=0}^{+\infty}\frac{n^2-2}{n!}$.

This is what I have done so far:

$$ \sum_{n=0}^{+\infty}\frac{n^2-2}{n!}=\sum_{n=0}^{+\infty}\frac{n^2}{n!}-2\sum_{n=0}^{+\infty}\frac{1}{n!}=\sum_{n=0}^{+\infty}\frac{n}{(n-1)!}-2e$$

And here I don't know how to deal with the $\frac{n}{(n-1)!} $. Any tips?

EDIT: One of the answers recommends to write down the sum as follows:

$$\sum_{n=0}^{+\infty}\frac{n^2-2}{n!}=\sum_{n=0}^{+\infty}\frac{n(n-1)}{n!} + \sum_{n=0}^{+\infty}\frac{n}{n!}-2\sum_{n=0}^{+\infty}\frac{1}{n!}$$

Which equals to:

$$\sum_{n=0}^{+\infty}\frac{n(n-1)}{n!} + \sum_{n=0}^{+\infty}\frac{n}{n!}-2\sum_{n=0}^{+\infty}\frac{1}{n!}=\sum_{n=0}^{+\infty}\frac{(n-1)}{(n-1)!}+\sum_{n=0}^{+\infty}\frac{1}{(n-1)!} -2e$$

But here I have negative factorials. What should I do next? Or can I just say that $\sum_{n=0}^{+\infty}\frac{1}{(n-1)!}=e$?

user401855
  • 1,067

4 Answers4

5

Hint: Write $$ \frac{n^2-2}{n!}=\frac{n(n-1)}{n!}+\frac{n}{n!}-\frac2{n!} $$


Note that by throwing out terms which are zero, $$ \sum_{n=0}^\infty\frac{n(n-1)}{n!}=\sum_{n=2}^\infty\frac{n(n-1)}{n!} $$ and $$ \sum_{n=0}^\infty\frac{n}{n!}=\sum_{n=1}^\infty\frac{n}{n!} $$

robjohn
  • 345,667
2

I thought it might be instructive to present a way forward that can be applied to a wide class of problems.


The Taylor series representation of he exponential function is given by

$$\bbox[5px,border:2px solid #C0A000]{e^x=\sum_{n=0}^\infty \frac{x^n}{n!}} \tag 1$$

Differentiating $(1)$ term-by-term, we see that

$$\frac{d\,e^x}{dx}=e^x=\sum_{n=0}^\infty \frac{n x^{n-1}}{n!} \tag2$$

whereby multiplying $(2)$ by $x$ reveals

$$xe^x =\sum_{n=0}^\infty \frac{nx^n}{n!} \tag 3$$


Differentiating $(3)$, multiplying by $x$, and subtracting $2e^x$, we obtain

$$(x^2+x-2)e^x=\sum_{n=0}^\infty \frac{(n^2-2)\,x^{n}}{n!} \tag 4$$

Finally, setting $x=1$ in $(4)$ yields

$$\bbox[5px,border:2px solid #C0A000]{\sum_{n=0}\frac{n^2-2}{n!}=0}$$

and we are done!

Mark Viola
  • 179,405
1

As per this post, we have

$$\sum_{n=0}^\infty\frac{n^p}{n!}=B_pe$$

where $B_n$ is the $n$th Bell number.

0

Adjust indices so that you have $\frac {n+1}{n!}$ and separate that out into $\frac n{n!}+\frac1{n!}$.

AlgorithmsX
  • 4,560