If $n \in \mathbb N$ and $n \geq 2$, then we have $\frac 12+ \frac 13+\dots + \frac 1n < \log n < 1 + \frac 12+ \dots + \frac {1}{n-1} $.
My try : Once if we can prove that for all $k \in \mathbb N$ and $k \geq 2$, $\frac 1k < \int_{k-1}^{k} \frac 1t dt < \frac {1}{k-1}$ then we are done.
But I am finding difficulty in proving the inequality $\frac 1k < \int_{k-1}^{k} \frac 1t dt < \frac {1}{k-1}$. Help needed!