Please help me to prove this inequality
$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n - 1}$$
Please help me to prove this inequality
$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n - 1}$$
there is a simple picture for this,
if we have $g(x) > 0$ but $g'(x) < 0,$ then $$ \int_a^{b+1} \; g(x) \; dx \; < \; \sum_{j=a}^b \; g(j) \; < \; \int_{a-1}^b \; g(x) \; dx $$
You need two versions, with $a=2,b=n$
$$ \sum_{j=2}^n \; \frac{1}{j} \; < \; \int_{1}^{n} \; \frac{1}{x} \; dx = \log n $$
$a=1 , b= n-1$ $$ \log n = \int_{1}^{n} \; \frac{1}{x} \; dx < \sum_{j=1}^{n-1} \; \frac{1}{j}$$
Hint:
$$\lfloor x\rfloor\le x\le\lceil x\rceil\implies \frac1{\lceil x\rceil}\le \frac1x\le \frac1{\lfloor x\rfloor}.$$
Integrate in unit intervals and sum.
$$\frac1n\le\log(n)-\log(n-1)\le\frac1{n-1}$$ which telescopes to $$H_{n}-1\le\log(n)-\log(1)\le H_{n-1}.$$