I would like to know wheather this series converge or diverge?
$\sqrt 2 +\sqrt { 2-\sqrt 2} +\sqrt { 2-\sqrt { 2+\sqrt 2} } +\sqrt { 2-\sqrt { 2+\sqrt { 2+\sqrt 2} } } +\cdots$
My work: multiplyIing both demominator and numerator to $\sqrt { 2+\sqrt { 2 } } $,$\sqrt { 2+\sqrt { 2+\sqrt { 2 } } } $,$\sqrt { 2+\sqrt { 2+\sqrt { 2+\sqrt { 2 } } } } $ respectively and so on..
$$\sqrt { 2 } +\frac { \sqrt { 2 } }{ \sqrt { 2+\sqrt { 2 } } } +\frac { \sqrt { 2-\sqrt { 2 } } }{ \sqrt { 2+\sqrt { 2+\sqrt { 2 } } } } +\frac { \sqrt { 2-\sqrt { 2+\sqrt { 2 } } } }{ \sqrt { 2+\sqrt { 2+\sqrt { 2+\sqrt { 2 } } } } } +...=\\ =\sqrt { 2 } +\frac { \sqrt { 2 } }{ \sqrt { 2+\sqrt { 2 } } } +\frac { \sqrt { 2 } }{ \left( \sqrt { 2+\sqrt { 2 } } \right) \left( \sqrt { 2+\sqrt { 2+\sqrt { 2 } } } \right) } +\frac { \sqrt { 2 } }{ \left( \sqrt { 2+\sqrt { 2 } } \right) \left( \sqrt { 2+\sqrt { 2+\sqrt { 2 } } } \right) \left( \sqrt { 2+\sqrt { 2+\sqrt { 2+\sqrt { 2 } } } } \right) } +...=\\ =\sqrt { 2 } \left[ 1+\frac { 1 }{ \sqrt { 2+\sqrt { 2 } } } +\frac { 1 }{ \left( \sqrt { 2+\sqrt { 2 } } \right) \left( \sqrt { 2+\sqrt { 2+\sqrt { 2 } } } \right) } +\frac { 1 }{ \left( \sqrt { 2+\sqrt { 2 } } \right) \left( \sqrt { 2+\sqrt { 2+\sqrt { 2 } } } \right) \left( \sqrt { 2+\sqrt { 2+\sqrt { 2+\sqrt { 2 } } } } \right) } +... \right] $$
we can write every term as :${ a }_{ n+1 }=\frac { 1 }{ \sqrt { 2+{ a }_{ n } } } ,{ a }_{ 0 }=\sqrt { 2 } $ it is obvious that the sequences are monotone decreasing so ${ a }_{ n }>{ a }_{ n+1 }$ and I wrote sum as:$$S_{ \infty }=\sqrt { 2 } \sum _{ i=0 }^{ \infty }{ \frac { 1 }{ { a }_{ i+1 }\sqrt { 2+{ a }_{ i } } } } $$(i am not sure about it) I am stuck here,I suspect series converges but how to show,which convergence tests can i use i don't know?Any hints,help will be appriceated? P.S.I apologize for my english