$$\mathop {\lim }\limits_{x \to \infty } (\sqrt[3]{{{x^3} + 5{x^2}}} - \sqrt {{x^2} - 2x} ) $$
My try:
$${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2}) $$
$$\mathop {\lim }\limits_{x \to \infty } \frac{{(\sqrt[3]{{{x^3} + 5{x^2}}} - \sqrt {{x^2} - 2x} )(\sqrt[{\frac{3}{2}}]{{{x^3} + 5{x^2}}} + \sqrt[3]{{{x^3} + 5{x^2}}}\sqrt {{x^2} - 2x} + {x^2} - 2x)}}{{(\sqrt[{\frac{3}{2}}]{{{x^3} + 5{x^2}}} + \sqrt[3]{{{x^3} + 5{x^2}}}\sqrt {{x^2} - 2x} + {x^2} - 2x)}} = $$
$$\mathop {\lim }\limits_{x \to \infty } \frac{{{x^3} + 5{x^2} - {x^2} - 2x}}{{(\sqrt[{\frac{3}{2}}]{{{x^3} + 5{x^2}}} + \sqrt[3]{{{x^3} + 5{x^2}}}\sqrt {{x^2} - 2x} + {x^2} - 2x)}} $$
And what's next...?
This task in first and second remarkable limits. I think i can replace variable, but how i will calculate it...