$$\large \lim_{x\to ∞} (\sqrt[3]{x^{3}+3x^{2}}-\sqrt{x^{2}-2x})$$
My try is as follows:
$$\large \lim_{x\to ∞} (\sqrt[3]{x^{3}+3x^{2}}-\sqrt{x^{2}-2x})=$$$$ \lim_{x\to ∞}x\left(\sqrt[3]{1+\frac{3}{x}}-\sqrt{1\ -\frac{2}{x}}\right)$$$$=\lim_{x\to ∞}x\lim_{x\to ∞}\left(\sqrt[3]{1+\frac{3}{x}}-\sqrt{1\ -\frac{2}{x}}\right)$$ which is $∞×0$ , but clearly this zero is not exactly zero. I was thinking about generalized binomial theorem, but seems it will make the limit difficult, so how this kind of limits can be solved without using Taylor series or L'Hopital's rule?