The natural way (and I think, the easier) to solve $$\lim_{n\to \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)$$
involves Riemann sums. Multiplying and dividing by $n$, we get
$$\lim_{n\to \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)=\frac{1}{n}\sum_{i=1}^{n}\frac{n}{n+i}=\frac{1}{n}\sum_{i=1}^nf\left(\frac{i}{n}\right)$$
where $f(x)=\frac{1}{1+x}$. The last expression is a Riemann sum associated to the partition $P_n=\{0, \frac{1}{n},\dots,\frac{n}{n}\}$ of $[0,1]$, so by Darboux Theorem
$$\lim_{n\to \infty}\frac{1}{n}\sum_{i=1}^nf\left(\frac{i}{n}\right)=\int_0^1\frac{1}{1+x}dx=\ln2$$
However, I'm curious if there are other techniques that can be used to find that limit, so my question is
Is it possible to find $$\lim_{n\to \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)$$ without using Riemann sums? If so, how?