Reasoning for $\frac{\ln|x|}{2}+ C$ :
$$\int \frac{1}{(2x)} \, dx = \frac{\ln|2x|}{2}+ C$$
Check: By taking derivative we get $\frac{1}{x}$
Reasoning for $\frac{\ln|x|}{2}+ C$ :
$$\int \frac{1}{2x} \, dx = \frac{1}{2}\int \frac{1}{x} \, dx =\frac{\ln|x|}{2}+ C$$
Check: By taking derivative we get $\frac{1}{x}$
Question: Is $\int \frac{1}{2x} \, dx $ equal to $\frac{\ln|2x|}{2}+ C$ or $\frac{\ln|x|}{2}+ C$?