1

I am getting 2 different answers for $\int \frac{1}{2x} \, dx $ and I do not know which is wrong. This is the first answer with steps: $$\int \frac{1}{2x} \, dx $$ $$\frac{1}{2}\int \frac{1}{x} \, dx $$ $$\frac{1}{2}\ln{|x|} +C $$ This is the second answer with steps: $$\int \frac{1}{2x} \, dx $$ $$\int1 (2x)^{-1} \, dx $$ $$u=2x $$ $$\frac{du}{dx}=2 $$ $$\frac{du}{2}=dx $$ $$\int1 (u)^{-1} \, \frac{du}{2} $$ $$\frac{1}{2}\int(u)^{-1} \, du $$ $$\frac{1}{2}\ln{|u|} +C $$ $$\frac{1}{2}\ln{|2x|} +C $$

2 Answers2

0

They are the same. Just $\ln|2x|=\ln2+\ln|x|$ and $\frac{1}{2}\ln2$ goes in $C$.

0

Note that $$\ln|2x|=\ln 2|x|=\ln 2+\ln |x|,$$ so they differ only by a constant.