Notice that
$$\frac 1 {r-1} - \left(\frac 1 {r+1} + \dots + \frac {2^n} {r^{2^n} + 1} \right) = \left( \frac 1 {r-1} - \frac 1 {r+1} \right) - \left(\frac 2 {r^2 + 1} + \dots + \frac {2^n} {r^{2^n} + 1} \right) = \\
\frac 2 {r^2 - 1} - \left(\frac 2 {r^2 + 1} + \dots + \frac {2^n} {r^{2^n} + 1} \right) = \frac 4 {r^4 - 1} - \left(\frac 4 {r^4 + 1} + \dots + \frac {2^n} {r^{2^n} + 1} \right) \dots = \\
\frac {2^n} {r^{2^n} - 1} - \frac {2^n} {r^{2^n} + 1} = \frac {2^{n+1}} {r^{2^{n+1}} - 1} .$$
Since $r>1$ we now have that
$$\lim _{n \to \infty} \frac {2^{n+1}} {r^{2^{n+1}} - 1} = \lim _{t \to \infty} \frac t {r^t - 1} = 0 ,$$
which means that
$$\lim _{n \to \infty} \left( \frac 1 {r-1} - \left(\frac 1 {r+1} + \dots + \frac {2^n} {r^{2^n} + 1} \right) \right) ,$$
i.e. that
$$\frac 1 {r-1} = \sum _{n=0} ^\infty \frac {2^n} {r^{2^n} + 1} .$$