First, replace $r$ by $r^{2^n}$ in your identity to get:
$$\frac{1}{r^{2^n}-1}-\frac{1}{r^{2^n}+1}=\frac{2}{r^{2^{n+1}}-1}$$
Then consider the partial sum: $s_n=\frac{1}{r+1}+\frac{2}{r^2+1}+\ldots+\frac{2^{n-1}}{r^{2^{n-1}}+1}$
You have:
$$\begin{align}\frac{1}{r-1}-s_1&=\frac{1}{r-1}-\frac{1}{r+1}=\frac{2}{r^2-1}\\\frac{1}{r-1}-s_2&=\frac{1}{r-1}-s_0-\frac{2}{r^2+1}\\
&=\frac{2}{r^2-1}-\frac{2}{r^2+1}=\frac{4}{r^4+1}\end{align}$$
And so on, in general (by induction):
$$\frac{1}{r-1}-s_n=\frac{2^n}{r^{2^n}+1}$$
Then take the limit:
$$\frac{1}{r-1}-s=\lim_{n\to\infty}\frac{2^n}{r^{2^n}+1}=\lim_{u\to\infty}\frac{u}{r^u+1}=0$$
(with substitution $u=2^n$, and using $r>1)$. So $s=\frac{1}{r-1}$