$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\infty}{x\cos\pars{x} - \sin\pars{x} \over x^{3}}\,
\cos\pars{x \over 2}\,\dd x \\[5mm] = &
\int_{0}^{\infty}{x\bracks{1 - 2\sin^{2}\pars{x/2}} - \sin\pars{x} \over x^{3}}\,\cos\pars{x \over 2}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{\infty}{2x\cos\pars{x/2} - 2x\sin\pars{x}\sin\pars{x/2} -
2\sin\pars{x}\cos\pars{x/2} \over x^{3}}\,\,\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{\infty}{x\cos\pars{x/2} + x\cos\pars{3x/2} -
\sin\pars{3x/2} - \sin\pars{x/2} \over x^{3}}\,\,\,\dd x
\\[1cm] & =
-\,{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{x/2} \over x^{2}}\,\dd x -
{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{3x/2} \over x^{2}}\,\dd x
\\[5mm] & -
{1 \over 4}\int_{x\ =\ 0}^{x\ \to\ \infty}\bracks{2x - \sin\pars{3x/2} - \sin\pars{x/2}}\,\dd\pars{1 \over x^{2}}
\end{align}
Integrating by parts the last integral:
\begin{align}
&\int_{0}^{\infty}{x\cos\pars{x} - \sin\pars{x} \over x^{3}}\,
\cos\pars{x \over 2}\,\dd x =
\\[5mm] & =
-\,{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{x/2} \over x^{2}}\,\dd x -
{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{3x/2} \over x^{2}}\,\dd x
\\[5mm] & +
{1 \over 4}\int_{x = 0}^{\infty}{2 - 3\cos\pars{3x/2}/2 - \cos\pars{x/2}/2 \over x^{2}}\,\dd x
\\[1cm] & =
-\,{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{x/2} \over x^{2}}\,\dd x -
{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{3x/2} \over x^{2}}\,\dd x
\\[5mm] & +
{3 \over 8}\int_{0}^{\infty}{1 - \cos\pars{3x/2} \over x^{2}}\,\dd x +
{1 \over 8}\int_{0}^{\infty}{1 - \cos\pars{x/2} \over x^{2}}\,\dd x
\\[1cm] & =
-\,{3 \over 8}\int_{0}^{\infty}{1 - \cos\pars{x/2} \over x^{2}}\,\dd x
-\,{1 \over 8}\int_{0}^{\infty}{1 - \cos\pars{3x/2} \over x^{2}}\,\dd x
\\[5mm] & =
-\,{3 \over 16}\int_{0}^{\infty}{1 - \cos\pars{x} \over x^{2}}\,\dd x
-\,{3 \over 16}\int_{0}^{\infty}{1 - \cos\pars{x} \over x^{2}}\,\dd x =
-\,{3 \over 8}\
\int_{0}^{\infty}{1 - \cos\pars{x} \over x^{2}}\,\dd x
\\[5mm] & =
-\,{3 \over 4}\int_{0}^{\infty}{\sin^{2}\pars{x/2} \over x^{2}}\,\dd x =
-\,{3 \over 8}\
\underbrace{\int_{0}^{\infty}{\sin^{2}\pars{x} \over x^{2}}\,\dd x}
_{\ds{=\ {\pi \over 2}}}\ = \
\bbox[#ffe,10px,border:1px dotted navy]{\ds{-\,{3 \over 16}\,\pi}}
\end{align}
>By integrating by parts:
$\ds{\int_{0}^{\infty}{\sin^{2}\pars{x} \over x^{2}}\,\dd x =
\int_{0}^{\infty}{\sin\pars{x} \over x}\,\dd x = {1 \over 2}\,\pi}$.