Continuing six points lie on a circle. I am looking for a proof of a problem as follows:
Let three circles $(O_1), (O_2), (O_3)$ are coaxial Circles. Let $P_1, P'_1$ lie on $(O_1)$, $P_2, P'_2$ lie on
$(O_2)$, $P_3, P'_3$ lie on $(O_3)$. Such that $P_1, P'_1, P_2, P'_2$ lie on a circle $(C_3)$, $P_2, P'_2, P_3, P'_3$ lie on a circle $(C_1)$ $P_3, P'_3, P_1, P'_1$ lie on a circle $(C_2)$. Let $(C_1) \cap (O_1) = Q_1, Q'_1$, $(C_2) \cap (O_2) = Q_2, Q'_2$, $(C_3) \cap (O_3) = Q_3, Q'_3$Then show that: $Q_1, Q'_1, Q_2, Q'_2$ lie on a circle, namely $(C'_3)$), $Q_2, Q'_2, Q_3, Q'_3$ lie on a circle, namely $(C'_1)$); $Q_3, Q'_3, Q_1, Q'_1$ lie on a circle, namely $(C'_2)$). Let $(C_1) \cap C'_1) = A_1, A'_1$, $(C_2) \cap C'_2) = A_2, A'_2$, $(C_3) \cap C'_3) = A_3, A'_3$.
Then show that: Six points $A_1, A_2, A_3, A'_1, A'_2, A'_3$ lie on a circle
