I'm struggling with finding effective ways to approach questions (especially proofs) that use summations and Taylor Series. I've worked through several simpler examples, but always get stuck once a non-trivial question arises. In particular, I'm hoping to get some help in proving the following statement $$\sum_{i=0}^{n-1} {2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}=2(1-\frac{1}{2^{2i}}{2i \choose i})$$
As a hint, it's stated that $ \frac{1-\sqrt{1-x}}{\frac{1}{2}x}=\sum_{i=0}^{\infty}{2i \choose i}\frac{1}{i+1}\frac{x^{i}}{2^{2i}} $ and that it may potentially be necessary to derive the Taylor seires centered at $x=0$ for $\frac{1-\sqrt{1-x}}{x} $ and $\frac{1}{\sqrt{1-x}} $
With some help, I've done the following work, but am not sure if I'm either headed in the right direction, or even correct:
$$\sum_{i=0}^{n-1} {2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}=\sum_{i=0}^{\infty}{2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}-\sum_{i=n}^{\infty}{2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}=2-\sum_{i=n}^{\infty}{2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}$$ From here, I've tried to get to the point of proving the following: $$2-\sum_{i=n}^{\infty}{2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}=2-\frac{2}{2^n}{2n \choose n}$$ $$\sum_{i=n}^{\infty}{2i \choose i} \frac{1}{i+1}\frac{1}{2^{2i}}=\frac{2}{2^n}{2n \choose n} $$ I really don't know where to proceed next, or which direction the proof will continue in. Any additions/corrections would be greatly appreciated. Thank you!
Edit: to add on another potential solution, would it hold any water to try to write down a recurrence relation, assuming the left side of the first equation to be $ a_n $?