While I was looking for an answer to this MSE post in order to prove \begin{align*} \frac{d^n}{dx^n}\left(\frac{1}{1-e^{-x}}\right)=(-1)^n\sum_{j=1}^n{n\brace j}j!\frac{e^{-jx}}{\left(1-e^{-jx}\right)^{j+1}}\tag{1} \end{align*} with the numbers ${n\brace j}$ denoting the Stirling numbers of the second kind I considered the following formula of the reciprocal of the $n$-th derivative of a function which might be interesting by itself.
With $D_x:=\frac{d}{dx}$ the following relationship is valid according to (3.63) in H.W. Goulds Binomial Identities, vol. I
\begin{align*} D_x^n\left(\frac{1}{f(x)}\right)=\sum_{j=0}^n(-1)^j\binom{n+1}{j+1}\frac{1}{\left(f(x)\right)^{j+1}}D_x^n\left(\left(f(x)\right)^j\right) \end{align*}
$$ $$
Applying this formula to the function $f(x)=\frac{1}{1-e^{-x}}$ we obtain \begin{align*} D_x^n&\left(\frac{1}{1-e^{-x}}\right)\\ &=\sum_{j=0}^n(-1)^j\binom{n+1}{j+1}\frac{1}{\left(1-e^{-x}\right)^{j+1}}D_x^n\left(\left(1-e^{-x}\right)^j\right)\\ &=\sum_{j=0}^n\frac{(-1)^j}{\left(1-e^{-x}\right)^{j+1}}\binom{n+1}{j+1}D_x^n\left(\sum_{k=0}^j\binom{j}{k}(-1)^ke^{-kx}\right)\\ &=(-1)^n\sum_{j=0}^n\frac{(-1)^j}{\left(1-e^{-x}\right)^{j+1}}\binom{n+1}{j+1}\sum_{k=0}^j\binom{j}{k}(-1)^kk^ne^{-kx}\\ &=\frac{(-1)^n}{(1-e^{-x})^{n+1}}\sum_{j=1}^n(-1)^j\left(1-e^{-x}\right)^{n-j}\binom{n+1}{j+1}\sum_{k=1}^j\binom{j}{k}(-1)^kk^ne^{-kx}\tag{2} \end{align*}
On the other hand with the identity ${n\brace j}=\frac{1}{j!}\sum_{k=0}^j(-1)^{j-k}\binom{j}{k}k^n$
we obtain from (1) \begin{align*} D_x^n&\left(\frac{1}{1-e^{-x}}\right)\\ &=(-1)^n\sum_{j=1}^n{n\brace j}j!\frac{e^{-jx}}{\left(1-e^{-jx}\right)^{j+1}}\\ &=(-1)^n\sum_{j=1}^n\frac{e^{-jx}}{\left(1-e^{-jx}\right)^{j+1}}\sum_{k=0}^j(-1)^{j-k}\binom{j}{k}k^n\\ &=\frac{(-1)^n}{(1-e^{-x})^{n+1}}\sum_{j=1}^n(-1)^je^{-jx}(1-e^{-x})^{n-j}\sum_{k=1}^j\binom{j}{k}(-1)^{k}k^n\tag{3} \end{align*}
I have difficulties to prove the equality of (2) with (3). So putting $y=e^{-x}$ I would like to ask for a prove of the following relationship
Claim: The following is valid for $n\geq 1$ and $y\geq 0$. \begin{align*} \sum_{j=1}^n&(-1)^j\left(1-y\right)^{n-j}\binom{n+1}{j+1}\sum_{k=1}^j\binom{j}{k}(-1)^kk^ny^k\\ &=\sum_{j=1}^n(-1)^jy^j(1-y)^{n-j}\sum_{k=1}^j\binom{j}{k}(-1)^{k}k^n \end{align*}
Please note I'm not interested in a proof by induction. I would like to see how to transform one side into the other, maybe with the help of generating functions.
Many thanks in advance.