I want to compute the following $n-th$ differentiation \begin{align} \frac{\partial^n}{\partial x^n} \left( \frac{1}{1 - e^{-x}} \right) \end{align}
With the some help of computation tools i have \begin{align} \frac{\partial^n}{\partial x^n} \left( \frac{1}{1 - e^{-x}} \right) = (-1)^n \sum_{k=1}^n a(k,n) \frac{e^-kx}{(1-e^{-x})^{k+1}} \end{align} Here what i want to do is find exact expression for $a(k,n)$
Here i state some examples
\begin{align} n=1 \qquad : \qquad -\frac{e^{-x}}{\left(1-e^{-x}\right)^2} \\ n=2 \qquad : \qquad \frac{2 e^{-2 x}}{\left(1-e^{-x}\right)^3}+\frac{e^{-x}}{\left(1-e^{-x}\right)^2} \\ n=3 \qquad : \qquad -\frac{6 e^{-2 x}}{\left(1-e^{-x}\right)^3}-\frac{6 e^{-3 x}}{\left(1-e^{-x}\right)^4}-\frac{e^{-x}}{\left(1-e^{-x}\right)^2} \\ n=4 \qquad : \qquad \frac{14 e^{-2 x}}{\left(1-e^{-x}\right)^3}+\frac{36 e^{-3 x}}{\left(1-e^{-x}\right)^4}+\frac{24 e^{-4 x}}{\left(1-e^{-x}\right)^5}+\frac{e^{-x}}{\left(1-e^{-x}\right)^2} \\ n=5 \qquad : \qquad -\frac{30 e^{-2 x}}{\left(1-e^{-x}\right)^3}-\frac{150 e^{-3 x}}{\left(1-e^{-x}\right)^4}-\frac{240 e^{-4 x}}{\left(1-e^{-x}\right)^5}-\frac{120 e^{-5 x}}{\left(1-e^{-x}\right)^6}-\frac{e^{-x}}{\left(1-e^{-x}\right)^2} \end{align} and so on.
I am trying to construct the coefficients but got stuck.
can you have any ideas?