Prove that there exists a constant $c>0$ such that for all $x \in [1,\infty)$, $$\sum_{n>x} \frac{1}{n^{2}} \leq \frac{c}{x}$$
-
2Don't merely post your questions. Add some thought and work on the problems to get a reasonable response. – StubbornAtom Apr 07 '17 at 16:46
-
If you can find a general bound of the form $\sum_{n=k}^{\infty} 1/n^2 \leq f(k)$ for all $k$, then you can work with that. – Michael Apr 07 '17 at 16:53
2 Answers
Note that since $1/n^2$ is monotonically decreasing, we can assert that for $x\ge 2$
$$\sum_{n= x}^\infty \frac1{n^2}\le \int_{x-1}^\infty \frac{1}{t^2}\,dt=\frac1{x-1}\le \frac2x \tag 1$$
For $x=1$, we have
$$\sum_{n=1}^\infty \frac1{n^2}\le 1+\int_{1}^\infty \frac{1}{t^2}\,dt=2 \tag 2$$
Putting together $(1)$ and $(2)$, we have for all $x\ge 1$
$$\sum_{n= x}^\infty \frac1{n^2}\le\frac2x $$
as was to be shown!
- 179,405
$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With the identity $\ds{\left.\sum_{n = 1}^{N}{1 \over n^{s}} \right\vert_{ {\large{\Re\pars{s}\ >\ 0 \atop N = 1,2,3,\ldots}}} = {N^{1 - s} \over 1 - s} + \zeta\pars{s} + s\int_{N}^{\infty}{\braces{x} \over x^{s + 1}}\,\dd x}$:
\begin{align} \sum_{n = m + 1}^{\infty}{1 \over n^{2}} & = \zeta\pars{2} - \sum_{n = 1}^{m}{1 \over n^{2}} = \zeta\pars{2} - \bracks{-\,{1 \over m} + \zeta\pars{2} + 2\int_{m}^{\infty}{\braces{x} \over x^{3}}\,\dd x} \\[5mm] & = {1 \over m}\ -\ \underbrace{2\int_{m}^{\infty}{\braces{x} \over x^{3}}\,\dd x} _{\ds{>\ 0\ \mbox{and}\ <\ {1 \over m^{2}}}}\implies \bbx{\ds{% {1 \over m} - {1 \over m^{2}} < \sum_{n = m + 1}^{\infty}{1 \over n^{2}} < \color{#f00}{{1 \over m}}}} \end{align}
- 89,464