I would like to solve this
Your inequality is equivalent to : $$\sum_{cyc}\frac{a}{13}\sin(\arctan(\sqrt{\frac{13}{5}}\frac{a}{b}))^2\geq \frac{a+b+c}{18}$$ Each side is divided by $b$
We get :
$$\frac{a}{13b} \sin(\arctan(\sqrt{\frac{13}{5}}\frac{a}{b}))^2+\frac{1}{13}\sin(\arctan(\sqrt{\frac{13}{5}}\frac{b}{c}))^2+\frac{c}{13b}\sin(\arctan(\sqrt{\frac{13}{5}}\frac{c}{a}))^2\geq \frac{1+\frac{a}{b}+\frac{c}{b}}{18}$$
Now we put :
$\sqrt{\frac{13}{5}}\frac{a}{b}=\frac{A}{B}$
$\sqrt{\frac{13}{5}}\frac{b}{c}=\frac{B}{C}$
$\sqrt{\frac{13}{5}}\frac{c}{a}=\frac{C}{A}$
We find :
$$\sqrt{\frac{5}{13}}\frac{A}{13B}\sin(\arctan(\frac{A}{B}))^2+\frac{1}{13}\sin(\arctan(\frac{B}{C}))^2+\sqrt{\frac{13}{5}}\frac{C}{13B}\sin(\arctan(\frac{C}{A}))^2\geq \frac{1+\sqrt{\frac{5}{13}}\frac{A}{B}+\sqrt{\frac{13}{5}}\frac{C}{B}}{18}$$
After that we put :
$\frac{A}{B}=\frac{x+y}{1-xy}$
$\frac{B}{C}=\frac{z+y}{1-zy}$
$\frac{C}{A}=\frac{x+z}{1-xz}$
With $xy<1$ , $yz<1$ et $zx<1$
Now we use the following identity :
$\arctan(x)+\arctan(y)=\arctan(\frac{x+y}{1-xy})$
We find :
$\sqrt{\frac{5}{13}}\frac{x+y}{13(1-xy)}\sin(\arctan(x)+\arctan(y))^2+\frac{1}{13}\sin(\arctan(z)+\arctan(y))^2+\sqrt{\frac{13}{5}}\frac{1-zy}{13(z+y)}\sin(\arctan(x)+\arctan(z))^2$
$\geq \frac{1+\sqrt{\frac{5}{13}}\frac{x+y}{1-xy}+\sqrt{\frac{13}{5}}\frac{1-zy}{y+z}}{18}$
Moreover $\sin(\arctan(u)+\arctan(v))^2=\frac{(u+v)^2}{(u^2+1)(v^2+1)}$
So we get the following inequality :
$\sqrt{\frac{5}{13}}\frac{x+y}{13(1-xy)}\frac{(x+y)^2}{(x^2+1)(y^2+1)}+\frac{1}{13}\frac{(z+y)^2}{(z^2+1)(y^2+1)}+\sqrt{\frac{13}{5}}\frac{1-zy}{13(z+y)}\frac{(x+z)^2}{(x^2+1)(z^2+1)}\geq \frac{1+\sqrt{\frac{5}{13}}\frac{x+y}{1-xy}+\sqrt{\frac{13}{5}}\frac{1-zy}{y+z}}{18}$
After that I think we can use trigonometric or hyperbolic properties but I don't know how .