0

I'm currently self studying Spivak's calculus, but the problems in the back of each chapter are quite difficult. I'm not sure where to start on this problem.

Find a $\delta$ such that $|f(x)-l| < \epsilon$ for all $x$ satisfying $0 < |x-a| < \delta$ for $f(x) = \frac1x$; $a =1$, $l =1$.

Robert Z
  • 145,942

3 Answers3

1

Note that $$ \left|\frac{1}{x}-1\right|=\left|\frac{1-x}{x}\right|=\frac{|x-1|}{|x|}\tag{1} $$ Suppose that $|x-1|<\frac{1}{2}$. Then $$ 1=|1|=|(1-x)+x|\leq |1-x|+|x|=|x-1|+|x|<\frac{1}{2}+|x| $$ and hence $$ |x|>1-\frac{1}{2}=\frac{1}{2}\Longleftrightarrow \frac{1}{|x|}<2 $$ Going back to $(1)$, we have $$ \left|\frac{1}{x}-1\right|=\frac{|x-1|}{|x|}<2|x-1| $$ We want to make $\left|\frac{1}{x}-1\right|<\epsilon$ which forces $2|x-1|<\epsilon$ and so $|x-1|<\frac{\epsilon}{2}$. Hence, we choose $\delta=\min\left(\frac{1}{2},\frac{\epsilon}{2}\right)$.

Note that there is nothing special about $\frac{1}{2}$. We could use $\frac{1}{3}$ but then we would choose $\delta=\min\left(\frac{1}{3},\frac{2\epsilon}{3}\right)$.

0

Hint. Note that for $x> 1/2$, $$|f(x)-l|=\left|\frac{1}{x}-1\right|=\frac{|x-1|}{|x|}<\frac{|x-1|}{1/2}=2|x-1|$$ Can you take it from here?

Robert Z
  • 145,942
0

first you can rewrite $\left|\frac{1}{x}-1\right|$ as $\frac{|x-1|}{|x|}$ and let's say $\delta=\frac{1}{2}$

now: $$|x-1|<\frac{1}{2}\implies-\frac{1}{2}<x-1<\frac{1}{2}\implies \frac{1}{2}<x<\frac{3}{2}\implies \frac{1}{2}<|x|<\frac{3}{2}\\\implies \frac{2}{3}<\frac{1}{|x|}<2$$

now we want to return to the original form:$$\frac{1}{|x|}<2\implies\frac{|x-1|}{|x|}<2|x-1|$$

now lets say that $\delta=\frac{\epsilon}{2}$(try to see why it works yourself), but now we have 2 values for $\delta$, so, we can see that $\delta=\frac{1}{2}$ works for all values of $x$ that are larger than $\frac{1}{2}$, so lets do the following:$$\delta=min\left(\frac{\epsilon}{2},\frac{1}{2}\right)$$

try to do the checking(or The Proof if you want to call it like this) alone.

I'm hoping I'm clear enough, ask if you don't understand something

ℋolo
  • 10,006
  • How do you know that 2|x−1| is less than epsilon? – Bob Johnson Aug 29 '17 at 06:29
  • @BobJohnson lets say that $\frac{\epsilon}{2}=\delta$ now look:$$|x-1|<\delta \implies 2|x-1|<2 \delta=2\frac{\epsilon}{2}=\epsilon$$ now this is the case where $\frac{\epsilon}{2}<\frac{1}{2}$ but when $|x|>\frac{1}{2},~\frac{1}{2}$ is less than $\frac{\epsilon}{2}$ and when you take this you will get $\frac{1}{|x|}<2$ and for $|x|>\frac{1}{2}$ it is always true – ℋolo Aug 29 '17 at 19:12