A while ago I posted another one like this with a incorrect approach, please see this one!
Is this an accurate proof for limits for the function $\frac{1}{x}$
$\displaystyle \lim_{x\to1} \frac{1}{x} = \frac{1}{1} = 1$
Using $\epsilon-\delta$ So,
$\displaystyle \frac{|x-1|}{|x|} < \epsilon$ for some $\displaystyle |x-1| < \delta$
Lets assume $|x - 1| < \frac{1}{3}$
$\displaystyle \frac{2}{3} < |x| < \frac{4}{3}$
$= \frac{3}{2} > \frac{1}{|x|} > \frac{3}{4}$
So we have,
$|x - 1| < \delta$
$\frac{1}{x} < \frac{4}{3}$
Therefore we get: $\frac{|x-1|}{|x|} < \frac{3\delta}{4}$
It is the equation: $\frac{3\delta}{4} = \epsilon$, which is possible only if, $\delta_1 = \frac{4\epsilon}{3}$
Therefore, $\delta = \min(\frac{1}{3},\frac{4\epsilon}{3})$