$\int\dfrac{\tan^2x}{\sqrt x}~dx$
$=\int\dfrac{\sec^2x-1}{\sqrt x}~dx$
$=\int\dfrac{\sec^2x}{\sqrt x}~dx-\int\dfrac{1}{\sqrt x}~dx$
$=\int\dfrac{1}{\sqrt x}~d(\tan x)-2\sqrt x$
$=\dfrac{\tan x}{\sqrt x}-\int\tan x~d\left(\dfrac{1}{\sqrt x}\right)-2\sqrt x$
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x-\int\tan u^2~d\left(\dfrac{1}{u}\right)$ (Let $u=\sqrt x$)
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x+\int\dfrac{\tan u^2}{u^2}~du$
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x+\int\sum\limits_{n=0}^\infty\dfrac{8}{(2n+1)^2\pi^2-4u^4}~du$ (use Mittag-Leffler Expansion of tangent)
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x+\int\sum\limits_{n=0}^\infty\dfrac{8}{((2n+1)\pi+2u^2)((2n+1)\pi-2u^2)}~du$
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x+\int\sum\limits_{n=0}^\infty\dfrac{4}{(2n+1)\pi((2n+1)\pi+2u^2)}~du+\int\sum\limits_{n=0}^\infty\dfrac{4}{(2n+1)\pi((2n+1)\pi-2u^2)}~du$
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x+\sum\limits_{n=0}^\infty\dfrac{2\sqrt2}{(2n+1)\pi\sqrt{(2n+1)\pi}}\tan^{-1}\dfrac{\sqrt2u}{\sqrt{(2n+1)\pi}}+\sum\limits_{n=0}^\infty\dfrac{2\sqrt2}{(2n+1)\pi\sqrt{(2n+1)\pi}}\tanh^{-1}\dfrac{\sqrt2u}{\sqrt{(2n+1)\pi}}+C$
$=\dfrac{\tan x}{\sqrt x}-2\sqrt x+\sum\limits_{n=0}^\infty\dfrac{2\sqrt2}{(2n+1)\pi\sqrt{(2n+1)\pi}}\tan^{-1}\dfrac{\sqrt{2x}}{\sqrt{(2n+1)\pi}}+\sum\limits_{n=0}^\infty\dfrac{2\sqrt2}{(2n+1)\pi\sqrt{(2n+1)\pi}}\tanh^{-1}\dfrac{\sqrt{2x}}{\sqrt{(2n+1)\pi}}+C$
SymPy,Sage,Maxima,Maple,Mathematica,Rubi- can't find.This is the answer for yours question. – Mariusz Iwaniuk Aug 28 '17 at 19:04