$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
You can use the Mittag-Leffler Expansion:
$\ds{\tan\pars{z}}$ has single poles at
$\ds{p_{n} = \pars{2n + 1}{\pi \over 2}}$, with residues
$\ds{r_{n} = -1}$, where $\ds{n \in \mathbb{Z}}$ .
$$
\bbx{\mbox{Note that}\quad p_{-n} = -p_{n - 1}}
$$
Then,
\begin{align}
\tan\pars{z} & =
\sum_{n = -\infty}^{\infty}\pars{-1}\pars{{1 \over z - p_{n}} + {1 \over p_{n}}} =
\sum_{n = 1}^{\infty}\bracks{%
\pars{{1 \over p_{n} - z} - {1 \over p_{n}}} +
\pars{{1 \over p_{-n} - z} - {1 \over p_{-n}}}}
\\[2mm] & +
\pars{{1 \over p_{0} - z} - {1 \over p_{0}}}
\\[5mm] & =
\lim_{N \to \infty}\sum_{n = 1}^{N}\bracks{%
\pars{{1 \over p_{n} - z} - {1 \over p_{n}}} +
\pars{{1 \over -p_{n - 1} - z} + {1 \over p_{n - 1}}}} +
\pars{{1 \over p_{0} - z} - {1 \over p_{0}}}
\\[5mm] & =
\lim_{N \to \infty}\bracks{\pars{{1 \over p_{0} - z} - {1 \over p_{0}}} +
\sum_{n = 1}^{N}\pars{{1 \over p_{n} - z} - {1 \over p_{n}}} +
\sum_{n = 1}^{N}\pars{{1 \over -p_{n - 1} - z} + {1 \over p_{n - 1}}}}
\\[5mm] & =
\lim_{N \to \infty}\bracks{\sum_{n = 0}^{N - 1}
\pars{{1 \over p_{n} - z} - {1 \over p_{n}}} +
\pars{{1 \over p_{N} - z} - {1 \over p_{N}}} +
\sum_{n = 0}^{N - 1}\pars{-\,{1 \over p_{n} - z} + {1 \over p_{n}}}}
\\[5mm] & =
\sum_{n = 0}^{\infty}\pars{{1 \over p_{n} - z} - {1 \over p_{n} + z}} =
\sum_{n = 0}^{\infty}{2z \over p_{n}^{2} - z^{2}} =
\sum_{n = 0}^{\infty}{8z \over \pars{2p_{n}}^{2} - 4z^{2}}
\\[5mm] & =
\bbx{\sum_{n = 0}^{\infty}{8z \over \pars{2n + 1}^{2}\pi^{2} - 4z^{2}}}
\end{align}