Good day everybody,
I am looking to prove this:
$$\delta_{a,b}=\left(\frac{1}{2}\right)^{2\left(a-b\right)}\sum_{\gamma=0}^{a-b}\left(-1\right)^{a-b-\gamma}\frac{b+\gamma}{b}\left(\begin{array}{c} 2a\\ a-b-\gamma \end{array}\right)\left(\begin{array}{c} 2b-1+\gamma\\ 2b-1 \end{array}\right)$$
for $a \ge 0 $ and $b \ge 1$.
The case $b=0$ is an exception to the rule but is also of interest for me. Therefore I would actually most appreciate a proof of matrices $D$ and $C$ to be inverse:
$$D_{mn}=\begin{cases} \left(-1\right)^{\frac{m-n}{2}}\left(\begin{array}{c} m\\ \frac{m-n}{2} \end{array}\right)\left(\frac{1}{2}\right)^{m} & \text{ if }n\leq m\text{ and }n-m\text{ is even}\\ 0 & \text{else} \end{cases} $$ and
$$C_{ij}=\begin{cases} 1 & \text{if }i=j=0\\ 2^{j}\left[\left(\begin{array}{c} \frac{i+j}{2}-1\\ j-1 \end{array}\right)+2\left(\begin{array}{c} \frac{i+j}{2}-1\\ j \end{array}\right)\right] & \text{else if }i\geq j\text{ and }i-j\text{ is even}\\ 0 & \text{else} \end{cases}$$
where indexing starts from zero (and thus contains also $b=0$ case).
Thank you.