Four orbits under
$$ x_{n+2} = 34 x_{n+1} - x_n, $$
$$ y_{n+2} = 34 y_{n+1} - y_n. $$
$$ (4,8); \; \; (92,520); \; \; (3124,17672); \; \; (106124,600328); $$
$$ (8,40); \; \; (256,1448); \; \; (8696,49192); \; \; (295408,1671080); $$
$$ (16,88); \; \; (536,3032); \; \; (18208,103000); \; \; (618536,3498968); $$
$$ (44,248); \; \; (1492,8440); \; \; (50684,286712); \; \; (1721764,9739768); $$
As sometimes happens, these can be combined into two orbits under
$$ x_{n+2} = 6 x_{n+1} - x_n, $$
$$ y_{n+2} = 6 y_{n+1} - y_n. $$
$$ (4,8); \; \; (16,88); \; \; (92,520); \; \; (536,3032); \; \; (3124,17672); \; \;(18208,103000); \; \; (106124,600328); \; \; (618536,3498968);$$
$$ (8,40); \; \; (44,248); \; \;(256,1448); \; \;(1492,8440); \; \; (8696,49192); \; \; (50684,286712); \; \; (295408,1671080); \; \;(1721764,9739768); $$
My program calls them $w,v.$
==================================================
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
17 96
3 17
Automorphism backwards:
17 -96
-3 17
17^2 - 32 3^2 = 1
w^2 - 32 v^2 = -448
Wed Oct 4 07:13:21 PDT 2017
w: 8 v: 4 ratio: 2 SEED KEEP +-
w: 40 v: 8 ratio: 5 SEED KEEP +-
w: 88 v: 16 ratio: 5.5 SEED BACK ONE STEP -40 , 8
w: 248 v: 44 ratio: 5.63636 SEED BACK ONE STEP -8 , 4
w: 520 v: 92 ratio: 5.65217
w: 1448 v: 256 ratio: 5.65625
w: 3032 v: 536 ratio: 5.65672
w: 8440 v: 1492 ratio: 5.65684
w: 17672 v: 3124 ratio: 5.65685
w: 49192 v: 8696 ratio: 5.65685
w: 103000 v: 18208 ratio: 5.65685
w: 286712 v: 50684 ratio: 5.65685
w: 600328 v: 106124 ratio: 5.65685
w: 1671080 v: 295408 ratio: 5.65685
w: 3498968 v: 618536 ratio: 5.65685
w: 9739768 v: 1721764 ratio: 5.65685
w: 20393480 v: 3605092 ratio: 5.65685
w: 56767528 v: 10035176 ratio: 5.65685
w: 118861912 v: 21012016 ratio: 5.65685
w: 330865400 v: 58489292 ratio: 5.65685
Wed Oct 4 07:15:22 PDT 2017
w^2 - 32 v^2 = -448
jagy@phobeusjunior:~$
============================