I can find this using the fact that $\sin(\sin^{-1}(x)) = x$, for all $x\in[-1,1].$
Now, differentiate.
$$\frac{d}{d\sin^{-1}(x)}\sin(\sin^{-1}(x))\cdot \frac{d}{dx} \sin^{-1}(x)= \frac{d}{dx} x= 1$$
$$\cos(\sin^{-1}(x))\cdot \frac{d}{dx} \sin^{-1}(x) = 1$$
$$\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\cos(\sin^{-1}(x))}$$
$$\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1-\sin^2(\sin^{-1}(x))}}$$
$$\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$
However, what if I wanted to differentiate this like $\ \sin^{-1}(\sin(x))$ without knowing the fact that $\ \frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$ ? Is there a solution for it? I keep getting stuck at a certain step when I try this...