We have,
$$4\arctan\left(\frac1{\sqrt{\phi^3}}\right)\color{red}-\arctan\left(\frac1{\sqrt{\phi^6-1}}\right)=\frac{\pi}2$$
$$4\arctan\left(\frac1{\sqrt{T^3}}\right)\color{blue}+\arctan\left(\frac1{\sqrt{(2T+1)^4-1}}\right)=\frac{\pi}2$$
with golden ratio $\phi$ and tribonacci constant $T$.
Note that,
$$\begin{aligned}\left(\sqrt{\phi^3}+i\right)^4\left(\sqrt{\phi^6-1}\color{red}-i\right)&=(\phi^3+1)^2\sqrt{-\phi^6}\\ \left(\sqrt{T^3}+i\right)^4\left(\sqrt{(2T+1)^4-1}\color{blue}+i\right)&=(T^3+1)^2\sqrt{-(2T+1)^4}\end{aligned}$$
The first one is from this post, while the second is from a session with Mathematica. However, I'm having a little trouble with the tetranacci constant.
Q: What would be analogous formulas using the tetranacci constant (and higher)?