Let $S=[1 \;1\;1],[1 \;2\;3],[1 \;0\;1]$ and $T=[0 \;1\;1],[1 \;0\;0],[1 \;0\;1]$. Find the transition matrix $P_{S\leftarrow T}$ from the set of ordered basis T to the set of ordered basis S.
All the examples in my text book are with column vectors as ordered basis and none with row vector; I cannot figure out how to tackle this problem. Any help is much appreciated.