A matrix associated to a transition of a Markov chain. The entries of this matrix represents a probability with the sum of a whole column being $1$.
Questions tagged [transition-matrix]
276 questions
2
votes
1 answer
$A$ is a Regular Transition Matrix $\Rightarrow$ $\lim\limits_{m \to \infty} A^m$ exists and rank 1
A is a Regular Transition Matrix $\Rightarrow$ $\lim\limits_{m \to \infty} A^m$ exists and rank 1
At the above proposition, what does "regular" mean?
delog
- 149
0
votes
1 answer
How do I compute the transition matrix P from two bases of 2x2 matrices?
I am given two bases of a vector space consisting of matrices.
e basis:
e1=`\begin{bmatrix}1&2\\0&5\end{bmatrix} e2=\begin{bmatrix}1&1\\-1&0\end{bmatrix}
e3= \begin{bmatrix}1&0\\2&3\end{bmatrix} e4=\begin{bmatrix}1&2\\4&3\end{bmatrix}
The second…
0
votes
2 answers
Find the transition matrix $P_{S\leftarrow T}$
Let $S=[1 \;1\;1],[1 \;2\;3],[1 \;0\;1]$ and $T=[0 \;1\;1],[1 \;0\;0],[1 \;0\;1]$. Find the transition matrix $P_{S\leftarrow T}$ from the set of ordered basis T to the set of ordered basis S.
All the examples in my text book are with column vectors…
nova_star
- 463