Let $f: S \to \mathbb{R}$ be a Lebesgue integrable function on a measure space $(S,\Sigma,\mu)$, then we may have \begin{align} \|f\|_{L^1} &:= \int_S |f| d\mu \\ \|f\|_{L^2} &:= \left(\int_S |f|^2 d\mu\right)^{\frac{1}{2}} \\ \|f\|_{L^\infty} &:= \inf\{C\ge0: |f|\le C \quad \text{a.e.-}\mu \} \end{align}
Is there any inequality like \begin{align} \|f\|_{L^1} \le \|f\|_{L^2} \le \|f\|_{L^\infty} \end{align} And why?
I am asking because I saw an inequality in some handout that \begin{align} |(uv,w)_{L^2}| \lesssim \|u\|_{L^\infty}\|v\|_{L^2}\|w\|_{L^2} \end{align} I know the first step the Cauchy-Schwarz inequality is applied so \begin{align} |(uv,w)_{L^2}| \lesssim \|u v\|_{L^2}\|w\|_{L^2} \end{align} but I don't understand why there holds \begin{align} \|u v\|_{L^2}\|w\|_{L^2} \lesssim \|u\|_{L^\infty}\|v\|_{L^2}\|w\|_{L^2} \end{align}
In particular, why does there hold \begin{align} \|u v\|_{L^2} \lesssim \|u\|_{L^\infty}\|v\|_{L^2} \end{align}
It looks like Holder's inequality applied but the $p,q$ do not satisfy conjugates. Can you show me how to use Holder's inequality to derive this inequality?