I found on Wikipedia page for "$L_p$ Spaces" [1] that if the norm is defined as: $$\|f(t)\|_p = \left(\int_{-\infty}^{\infty} |f(t)|^p dt \right)^\frac{1}{p}$$ with $|\cdot|$ the "absolute value", then the following relations are true:
- $||f||_1 \geq ||f||_2$
- $||f||_{p+a} \leq ||f||_p$ for any $p \geq 1$ and $a \geq 0$.
There is also defined that (if I made no mistake): $$\|f(t)\|_\infty = \lim_{p \to \infty}\|f\|_p = \sup_t\{|f(t)|\}$$
So following point 2, then also I have that: $\|f\|_\infty \leq \|f\|_2$, (since $2+\infty \gg 2$).
A) I want to know if this relation $\|f(t)\|_1 \geq \|f(t)\|_2 \geq \|f(t)\|_\infty$ is always true? If not, what is needed to make it true? And also, if I have understood properly the definition of $\|f\|_\infty$.
I have tried some examples of real-valued one-variable Lebesgue-integrable and square-integrable functions using Wolfram-Alpha [2]:
a) $f_1(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$ the standard Gaussian distribution.
b) $f_2(t) = e^{-t} \cdot \theta(t)$, with $\theta(t)$ the standard step function.
$$ \begin{array}{| c | c : c : c | c| c|} \hline f(t) & \|f\|_1 = \int_{-\infty}^\infty |f(t)|\,dt & \|f\|_2 = \sqrt{\int_{-\infty}^\infty |f(t)|^2\,dt} & \|f\|_\infty = \sup_t\{|f(t)|\} & ¿ \|f\|_2 \leq \|f\|_1 ? & ¿ \|f\|_\infty \leq \|f\|_2 ? \\ \hline f_1 & 1 & \sqrt{\frac{1}{2 \sqrt{\pi}}} = 0.531 & \frac{1}{\sqrt{2\pi}} = 0.39 & \color{green}{\checkmark} & \color{green}{\checkmark} \\ \hdashline f_2 & 1 & \sqrt{\frac{1}{2}} = 0.707 & 1 & \color{green}{\checkmark} & \color{red}{\times}\\ \hline \end{array} $$
Since $f_2(t)$ doesn't fulfill the relation from Wikipedia, What I am doing wrong?
B) Is $\int_{-\infty}^\infty |f(t)|\,dt \leq \sqrt{\int_{-\infty}^\infty |f(t)|^2\,dt}$?? or $\sqrt{\int_{-\infty}^\infty |f(t)|^2\,dt} \leq \int_{-\infty}^\infty |f(t)|\,dt$?? or Nothing can be stated about it beforehand knowing $f(t)$??
C) Is $ \sup_t\{|f(t)|\} \leq \sqrt{\int_{-\infty}^\infty |f(t)|^2\,dt}$?? or $\sqrt{\int_{-\infty}^\infty |f(t)|^2\,dt} \leq \sup_t\{|f(t)|\}$?? or Nothing can be stated about it beforehand knowing $f(t)$??
D) Is the Hölder's inequality always valid for any $f(t)$ if the integration domain is $(-\infty\,;\,+\infty)$???
On Wikipedia [3] says the following related inequality is true for any $p \leq 1$ and $\frac{1}{p}+\frac{1}{q}=1$ for some integration interval $S$, and I want to know if is valid for $S=(-\infty\,;\,+\infty)$ and $p=q=2$, or equivalently: $$ \int_{-\infty}^{\infty} |f(t) \cdot g(t)| dt \leq \sqrt{\int_{-\infty}^{\infty} |f(t)|^2 dt} \cdot \sqrt{\int_{-\infty}^{\infty} |g(t)|^2 dt} $$