Propositions 1. Function $f(x)=\frac{x^{\varepsilon}}{\ln^k{x}}$ is ascending for large $x>0$.
Because
$$f'(x)=\frac{x^{\varepsilon-1} (\varepsilon \ln^k{x}-k)}{\ln^{k+1}{x}}>0 \iff
\varepsilon \ln^k{x}-k>0 \iff
x> e^{\sqrt[k]{\frac{k}{\varepsilon}}}$$
Propositions 2. $\lim\limits_{x\rightarrow \infty}f(x) \rightarrow \infty$
If we assume it is bounded by a large $\alpha>0, \forall x>1$ and we know $\ln{x}$ is ascending
$$\frac{x^{\varepsilon}}{\ln^k{x}} < \alpha \iff
1<x^{\varepsilon}< \alpha \ln^k{x} \iff
\color{red}{0}<\varepsilon<\frac{\ln{\alpha}}{\ln{x}}+\frac{k\ln{\ln{x}}}{\ln{x}}\rightarrow \color{red}{0}, x\rightarrow\infty$$
which is a contradiction of $\varepsilon>0$. So, $f(x)$ is increasing and has no upper bound.
As a result:
$$\lim\limits_{n\rightarrow\infty}\frac{n^{\varepsilon}}{\ln^k{n}}\rightarrow\infty \iff
\lim\limits_{n\rightarrow\infty}\frac{\ln^k{n}}{n^{\varepsilon}}=0 \iff
\ln^k{n}=o\left(n^{\varepsilon}\right)$$